Solving difference equation with its initial conditions

17 visualizaciones (últimos 30 días)
Ben Le
Ben Le el 19 de Feb. de 2017
Editada: Ben Le el 21 de Feb. de 2017
Hi,
Consider a difference equation:
8*y[n] - 6*y[n-1] + 2*y[n-2] = 1
with initial conditions
y[0]= 0 and y[-1]=2
How can I determine its plot y(n) in Matlab? Thank you in advance for your help!
  2 comentarios
John D'Errico
John D'Errico el 19 de Feb. de 2017
Surely you can use a loop? Why not make an effort? You have the first two values, so a simple loop will suffice.
More importantly, you need to spend some time learning MATLAB. Read the getting started tutorials. It is apparent that you don't know how to even use indexing in MATLAB, nor how to use a for loop.
You will need to recognize that MATLAB does NOT allow zero or negative indices.
Walter Roberson
Walter Roberson el 19 de Feb. de 2017
I would call this a recurrence equation, not a difference equation.

Iniciar sesión para comentar.

Respuesta aceptada

Jan
Jan el 21 de Feb. de 2017
Editada: Jan el 21 de Feb. de 2017
Resort the terms:
8*y[n] - 6*y[n-1] + 2*y[n-2] = 1
y[n] = (1 + 6*y[n-1] - 2*y[n-2]) / 8
or in Matlab:
y(n) = (1 + 6*y(n-1) - 2*y(n-2)) / 8;
Now the indices cannot start at -1, because in Matlab indices are greater than 0. This can be done by a simple translation:
y = zeros(1, 100); % Pre-allocate
y(1:2) = [2, 0];
for k = 3:100
y(k) = (1 + 6*y(k-1) - 2*y(k-2)) / 8;
end
Now you get the y[i] by y(i+2).

Más respuestas (1)

Sindhuja Parimalarangan
Sindhuja Parimalarangan el 21 de Feb. de 2017
This link discusses solving recurrence equations using MATLAB. The discrete solution for "y" can be plotted using the stem function.

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Etiquetas

Aún no se han introducido etiquetas.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by