How to Simplify an symbolic expression
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi all, I want to simplify this equation
a= 2 atan((-2+Sqrt(4-gama^2 *l^2* M^2-4* gama *l* M^2 *tan(gama/2)+4* tan(gama/2)^2-4 *M^2 *tan(gama/2)^2))/(gama* l* M+2* tan(gama/2)+2* M* tan(gama/2)))
into this form
a= (gama/2)-asin(((gama*l*M)/2)*cos(gama/2)+M*sin(gama/2))
Can anyone help?
7 comentarios
Torsten
el 20 de Abr. de 2017
Or maybe this can help:
https://de.mathworks.com/help/symbolic/isequaln.html
Best wishes
Torsten.
Respuestas (2)
Andrew Newell
el 21 de Abr. de 2017
If I define
a= 2*atan((-2+sqrt(4-gama^2 *l^2* M^2-4* gama *l* M^2 *tan(gama/2)+4* tan(gama/2)^2-4 *M^2 *tan(gama/2)^2))/(gama* l* M+2* tan(gama/2)+2* M* tan(gama/2)));
b = (gama/2)-asin(((gama*l*M)/2)*cos(gama/2)+M*sin(gama/2));
and substitute pi for gama,
subs(a,gama,pi)
subs(b,gama,pi)
I get a==NaN and b==pi/2 - asin(M). So they are not the same. I find that applying simplify to a does not change it significantly.
5 comentarios
Torsten
el 21 de Abr. de 2017
I still don't understand why you try to transform the first expression into the second if - as you write - you are sure that both expressions yield the same values for a (at least in cases where both expressions are real-valued).
Best wishes
Torsten.
Walter Roberson
el 21 de Abr. de 2017
I randomly substituted M=2, l=3. With those two values, the two expressions are not equal. One of the two goes complex from about gama = pi to gama = 17*pi/16 . From 17*pi/16 to roughly 48*Pi/41 the difference between the two is real valued . After that the difference has a real component of 2*pi and an increasing imaginary component.
8 comentarios
Andrew Newell
el 23 de Abr. de 2017
To summarize what Walter and I are saying, the two expressions are clearly not always equal, and the conditions under which they are equal are hard to pin down. Perhaps you should look more closely at how they did it in the article. Not that published work is always 100% correct.
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!