Error using Integral - IntegralCalc - Syms

16 visualizaciones (últimos 30 días)
Muthu Ram Prabhu Elenchezhian
Muthu Ram Prabhu Elenchezhian el 27 de Abr. de 2017
Hi, This is my Code
clc
clear all
syms Th
th1=5*pi/12 ;
th2=7*pi/12;
A11= @(Th) (10279222485063723*cos(Th).^2)/2684354560000 + (9*((7138348947960919*cos(Th).^2)/8589934592 + 1142135831673747/4294967296))/(625*cos(Th).^2)
A11Bar=integral(A11,th1,th2)
Acap =(10279222485063723*cos(Th).^2)/2684354560000 + (9*((7138348947960919*cos(Th).^2)/8589934592 + 1142135831673747/4294967296))/(625*cos(Th).^2)
Acap11 = @(Th) Acap
Acap11Bar=integral(Acap11,th1,th2)
I am trying to Integrate the Equation in A11 with limits th1 and th2. Using the Integral command, If I am using the equation directly it gives me the answer. But if Define the equation as Acap, Acap becomes symbolic and I dont get answer and the error comes as follows. My Question is , Th is a sym, but I get the answer for A11Bar, when using Th in A11, But why not the same in the other case.
A11 =
@(Th)(10279222485063723*cos(Th).^2)/2684354560000+(9*((7138348947960919*cos(Th).^2)/8589934592+1142135831673747/4294967296))/(625*cos(Th).^2)
A11Bar =
4.090565444758960e+04
Acap =
(2569805621265931*cos(Th)^2)/671088640000 + ((64245140531648271*cos(Th)^2)/8589934592 + 10279222485063723/4294967296)/(625*cos(Th)^2)
Acap11 =
@(Th)Acap
Error using integralCalc/finalInputChecks (line 511) Input function must return 'double' or 'single' values. Found 'sym'.
Error in integralCalc/iterateScalarValued (line 315) finalInputChecks(x,fx);
Error in integralCalc/vadapt (line 132) [q,errbnd] = iterateScalarValued(u,tinterval,pathlen);
Error in integralCalc (line 75) [q,errbnd] = vadapt(@AtoBInvTransform,interval);
Error in integral (line 88) Q = integralCalc(fun,a,b,opstruct);
Error in Untitled (line 13) Acap11Bar=integral(Acap11,th1,th2)

Respuesta aceptada

Torsten
Torsten el 27 de Abr. de 2017
Use
Acap11 = matlabFunction(Acap)
Best wishes
Torsten.
  5 comentarios
Torsten
Torsten el 27 de Abr. de 2017
Editada: Torsten el 27 de Abr. de 2017
90° is in between 75° and 105°, and you integrate over the entire interval.
Note that x=1.5708 is approximately pi/2.
Best wishes
Torsten.
Muthu Ram Prabhu Elenchezhian
Muthu Ram Prabhu Elenchezhian el 27 de Abr. de 2017
Hi, Thanks. I understood it now

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Design and Simulate SerDes Systems en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by