why two different mini-batch Accuracy in CNN

4 visualizaciones (últimos 30 días)
Arthur Chien
Arthur Chien el 2 de Mayo de 2017
Comentada: shefali saxena el 19 de En. de 2019
I am trying train a CNN.GPU device is Nvidia 1050.
My code
train_data_total=img;
label_4=YTrain;
layers_first = [imageInputLayer([32 32 3],'Normalization','none');
convolution2dLayer(5,130);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,180);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(256);
reluLayer();
fullyConnectedLayer(2);
softmaxLayer();
classificationLayer()];
opts_first = trainingOptions('sgdm','MiniBatchSize',256,'MaxEpochs',70 ...
,'InitialLearnRate',0.01,'Momentum',0,'Shuffle','once');
train_data_total=imresize(train_data_total,[32 32]);
net_first = trainNetwork(train_data_total,label_4,layers_first,opts_first);
YTrain_output1=classify(net_first,train_data_total);
train_accuracy1 = sum(YTrain_output1 == label_4)/numel(label_4)
My question is why Mini-batch Accuracy is around 50%.
And another computer using the same code and same input has Mini-batch Accuracy is around 98%.
Anyone has an idea of this
  4 comentarios
Arthur Chien
Arthur Chien el 3 de Mayo de 2017
I am using Matlab R2016a
Joss Knight
Joss Knight el 13 de Mayo de 2017
Then you need to install the patch.

Iniciar sesión para comentar.

Respuestas (1)

Joss Knight
Joss Knight el 16 de Mayo de 2017
You need to install the patch.
  3 comentarios
Joss Knight
Joss Knight el 17 de Mayo de 2017
Please accept the answer.
shefali saxena
shefali saxena el 19 de En. de 2019
hello sir
i am using Matlab R2017b
I am facing the same problem when traing CNN for ECG signals
My Mini-batch Accuracy is around 50%. and Mini Batch loss is Fixed at 0.69xx.
how can i resolve this problem ???
Training on single CPU.
|=======================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=======================================================================|
| 1 | 1 | 0.72 | 0.6930 | 70.00% | 0.0010 |
| 4 | 320 | 11.36 | 0.6931 | 50.00% | 0.0010 |
| 8 | 640 | 21.76 | 0.6929 | 70.00% | 0.0010 |
| 12 | 960 | 32.12 | 0.6937 | 40.00% | 0.0010 |
| 16 | 1280 | 42.50 | 0.6932 | 50.00% | 0.0010 |
| 20 | 1600 | 53.04 | 0.6932 | 50.00% | 0.0010 |
| 23 | 1920 | 63.60 | 0.6930 | 50.00% | 0.0010 |
| 27 | 2240 | 74.73 | 0.6929 | 70.00% | 0.0010 |
| 31 | 2560 | 85.56 | 0.6932 | 50.00% | 0.0010 |
| 35 | 2880 | 96.81 | 0.6929 | 80.00% | 0.0010 |
| 39 | 3200 | 107.51 | 0.6930 | 60.00% | 0.0010 |
| 42 | 3520 | 118.29 | 0.6938 | 40.00% | 0.0010 |
| 46 | 3840 | 129.85 | 0.6933 | 30.00% | 0.0010 |
| 50 | 4160 | 140.92 | 0.6946 | 30.00% | 0.0010 |
| 54 | 4480 | 151.81 | 0.6928 | 60.00% | 0.0010 |
| 58 | 4800 | 163.14 | 0.6936 | 30.00% | 0.0010 |
| 61 | 5120 | 174.09 | 0.6932 | 50.00% | 0.0010 |
| 65 | 5440 | 184.38 | 0.6933 | 40.00% | 0.0010 |
| 69 | 5760 | 194.80 | 0.6928 | 60.00% | 0.0010 |
| 73 | 6080 | 205.18 | 0.6938 | 40.00% | 0.0010 |
| 77 | 6400 | 215.87 | 0.6931 | 60.00% | 0.0010 |
| 80 | 6720 | 227.45 | 0.6934 | 30.00% | 0.0010 |
| 84 | 7040 | 239.33 | 0.6932 | 50.00% | 0.0010 |
| 88 | 7360 | 250.64 | 0.6930 | 70.00% | 0.0010 |
| 92 | 7680 | 261.30 | 0.6931 | 50.00% | 0.0010 |
| 96 | 8000 | 271.53 | 0.6931 | 60.00% | 0.0010 |
| 100 | 8320 | 282.09 | 0.6935 | 40.00% | 0.0010 |
| 100 | 8400 | 284.69 | 0.6937 | 30.00% | 0.0010 |
|=======================================================================|
accuracy = 0.5000
please help !!!!

Iniciar sesión para comentar.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by