Training deep convolution regression network with multi dimensional output
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I'm taking in an input image of 512x512 and running it through an alexnet type architecture. The output needs to be another image. The image can be arranged as either [512pixels, 512pixels,1channel,N number of examples] or as [262144,N]. Niether of them are working. The trainNetwork function is being used. Any help you could provide would be greatly appreciated.
0 comentarios
Respuestas (1)
Gautham Sholingar
el 16 de Mayo de 2017
1) Could you share some of your code to explain how you are setting up the neural network?
2) Is there a specific error you notice when you try to run the 'trainNetwork' function?
3) Have you had a chance to look at some of the shipped examples which explain how to use an 'm by m by 1' channel image dataset for training a network? Run the following command in the MATLAB command window to look at the example which shows this:
>> openExample('nnet/UseDataInImageDatastoreForTrainingCNNExample')
The following documentation link explains this example: https://www.mathworks.com/help/nnet/ref/trainnetwork.html#bvg3o5h-1
0 comentarios
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!