How can I fit a second Fourier component to a polar histogram?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I would like to fit a second Fourier series function: E(x) = (1/2*pi)*(1+A1*cos(2*xdata-A2))
to
theta = atan2(rand(100000,1)-0.5,2*(rand(100000,1)-0.5)); polarhistogram(theta,25);
Regards, Eric
0 comentarios
Respuestas (1)
David Goodmanson
el 24 de Mayo de 2017
Hi Eric, see how this works. I added an adjustable tilt angle to the random data to test the fit. The code compares the fit to the unnormalized histogram, with its total of 1e5 points. To go to the normalized expression you have, then A1 = B1/c(n0) and A2 = -B2.
npts = 1e5;
n = 25; % should be odd
tilt = pi/4;
theta = atan2(rand(npts,1)-0.5,2*(rand(npts,1)-0.5)) + tilt;
theta = mod(theta+pi,2*pi)-pi;
h = polarhistogram(theta,n);
% start fit
val = h.Values;
c = fftshift(fft(ifftshift(val)))/n; % fourier coefficients
% n0 is index for constant term. c(n0) = npts/n = average bin value
n0 = (n+1)/2;
B1 = 2*abs(c(n0+2));
B2 = angle(c(n0+2));
theta1 = (h.BinEdges(1:end-1) + h.BinEdges(2:end))/2; % bin centers
E = c(n0) + B1.*cos(2*theta1 + B2);
hold on
polarplot(theta1,E,'-o')
hold off
3 comentarios
David Goodmanson
el 26 de Mayo de 2017
Hi Eric, what version of matlab are you using? This seems a bit odd since your original question contains that function.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!