What is wrong with my lsqcurvefit script here?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have Xdata and Ydata as input data points. And I need to do non-linear regression. Here's what I am doing.
K=2; V=0.3;
X0=[K,V];
options = optimset('DiffMinChange',[0.000001],'disp','iter','Algorithm',[],'MaxIter',100000,'MaxFunEvals',[10000]);%simple max eval fun 100000
options = optimset(options, 'TolX', 1e-14);
[fitted_param] = lsqcurvefit(@(fitted_param,XDATA) ((1+(XDATA*K)).*exp(V*XDATA)),X0,XDATA,YDATA,[],[],options)
It stops at one step and give the same values of parameters as I provide as input.
Thanks
0 comentarios
Respuestas (1)
Walter Roberson
el 4 de Jun. de 2017
[fitted_param] = lsqcurvefit(@(fitted_param,XDATA) ((1+(XDATA*K)).*exp(V*XDATA)),X0,XDATA,YDATA,[],[],options)
Your target function @(fitted_param,XDATA) ((1+(XDATA*K)).*exp(V*XDATA)) ignores the first parameter, returning the same output no matter what model parameters are suggested in its first input. lsqcurvefit determines that the output is not changing with the input model parameters and so figures the the initial model parameters X0 are as good as any other possibilities.
I suspect you are looking for something like
[fitted_param] = lsqcurvefit(@(KV,XDATA) ((1+(XDATA*KV(1))).*exp(KV(2)*XDATA)), X0, XDATA, YDATA, [], [], options)
0 comentarios
Ver también
Categorías
Más información sobre Downloads en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!