How to i find the integral/derivative of a transfer function ?

28 visualizaciones (últimos 30 días)
have a transfer function, how to get its integral?

Respuesta aceptada

Sebastian Castro
Sebastian Castro el 4 de Jun. de 2017
Editada: Sebastian Castro el 4 de Jun. de 2017
Are you using Control System Toolbox? Recall that the transfer function for a derivative is s and for an integrator is 1/s. So, for example:
>> G = tf(1,[1 5 10])
>> s = tf('s')
Then
>> G_deriv = G*s;
>> G_int = G*(1/s);
If you're using discrete, you can similarly do this with z = tf('z');
- Sebastian
  4 comentarios
Karl Magro
Karl Magro el 14 de Mzo. de 2018
So lets say you have the following trasnfer function:
(1.417s+37.83)/(s^2+1.417s+37.83)
The first derivative of it would be: (1.417s^2+37.83s)/(s^2+1.417s+37.83)
Is that correct Sebastian?
Dhanush D Shekar
Dhanush D Shekar el 26 de Oct. de 2020
sebastian is talkin about taking the derivative in time domain

Iniciar sesión para comentar.

Más respuestas (1)

Drew
Drew el 15 de Mzo. de 2025
  2 comentarios
Walter Roberson
Walter Roberson el 15 de Mzo. de 2025
I do not understand this answer to the question about taking integrals and derivatives of transfer functions.
For one thing, the integral involves the variable t but transfer functions tradtionally use s or z . Using the variable t makes it appear as if this is an integral in the time domain, in which case it is not a transfer function.
Walter Roberson
Walter Roberson el 15 de Mzo. de 2025
syms t y(x)
eqn = diff(y,x) * int(sin(t^2), t, sqrt(x), sym(pi)/4)
eqn(x) = 
char(eqn)
ans = '-(2^(1/2)*pi^(1/2)*(fresnels((2^(1/2)*x^(1/2))/pi^(1/2)) - fresnels((2^(1/2)*pi^(1/2))/4))*diff(y(x), x))/2'

Iniciar sesión para comentar.

Categorías

Más información sobre Dynamic System Models en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by