Null space vs eigenvectors

3 visualizaciones (últimos 30 días)
Jeff
Jeff el 10 de Jun. de 2017
Comentada: Jeff el 10 de Jun. de 2017
Below is a code I ran to compare the null space & the eigenvectors of matrix A. Please correct me if I am wrong, but I thought that the eigenvectors are the same as the null space for the matrix [A-D(n,n)*I]. Unfortunately, my results do not seem to support that premise. What do I have wrong?
A=[[14 8 -19];[-40 -25 52];[-5 -4 6]];
[V,D]=eig(A);
Vnull=null(A-D(1,1)*eye(3));
Vnull=[null(A-D(1,1)*eye(3)) null(A-D(2,2)*eye(3)) null(A-D(3,3)*eye(3))];
Vchek=[V Vnull];

Respuesta aceptada

David Goodmanson
David Goodmanson el 10 de Jun. de 2017
Editada: David Goodmanson el 10 de Jun. de 2017
Hi Jeff, Since your eigenvalues are all distinct, what you have is basically correct. It's just that the eigenvector and the null vector don't have to be identical, merely proportional. Taking the first column of both Vnull and V and dividing element by element shows proportionality
>> V(:,1)./Vnull(:,1)
ans =
0.7071 - 0.7071i
0.7071 - 0.7071i
0.7071 - 0.7071i
and the same is true for the other two columns.
  1 comentario
Jeff
Jeff el 10 de Jun. de 2017
Thanks David, I guess I was working a bit too late. The proportionality completely escaped me, especially when you take Vnull(3,1)/V(3,1). I was expecting an output of
real(Vnull(3,1))/real(V(3,1))+imag(Vnull(3,1))/imag(V(3,1))*i
ans =
0.0000 + 1.4142i
I completely forgot how to divide complex numbers appropriately. Thanks for setting me straight!!!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Operating on Diagonal Matrices en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by