Error using sqpInterface Objective function is undefined at initial point.

32 visualizaciones (últimos 30 días)
while using nmpc example of the inverted pendulum.I am getting this error. I just change model to double pendulum model in pendulumCT.m file. what should I do?
Error using sqpInterface
Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 808)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in nmpc (line 52)
uopt = fmincon(COSTFUN,uopt,[],[],[],[],LB,UB,CONSFUN,options);

Respuesta aceptada

Jacob Bean
Jacob Bean el 19 de Jul. de 2017
First try evaluating your cost function with your initial guess and see if you can actually get an output. I believe that fmincon expects the output of the cost function to be a real scalar value. Double check that you're not outputting a complex quantity.
  1 comentario
Scott Pham
Scott Pham el 1 de Dic. de 2019
Editada: Scott Pham el 1 de Dic. de 2019
Hi!
I am having the same issue. My cost function is complex variable scalar function, relative error Erel which should be close to zero. I supplied gradient of cost function qV with respest to position, I haven't supplr constrains on material properties yet. I basically already solved inverse problem and minimized Erel, I need to find a configuration that satisfies the constrains for both position of configuration and material properties of each scatterrer. In the past I used fmincon for real function but this time I am solving inverse problem, and cost function is complex values. Can fmincon deal with it? I have some outputs and error message below.
Thanks in advance,
Feruza. I was not able to inlcude my info. My email is: aferuza@gmail.com
Erel =
2.4496e-12 - 4.3748e-15i
qV =
1.0e-11 *
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
-0.1168 + 0.0034i
0.0430 - 0.0004i
Error using sqpInterface
Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 833)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] =
sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in main_InverseScatteringPattern_fmincon (line 176)
[x,fval,exitflag,output,grad] =
fmincon(objective,x0,A,b,Aeq,beq,lb,ub,nonlincon,options);

Iniciar sesión para comentar.

Más respuestas (3)

kamilya MIMOUNI
kamilya MIMOUNI el 26 de Oct. de 2019
error using sqpInterface
Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 823)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in Test3 (line 89)
Control_optimal = fmincon(problem)
i have this problem in matlab
please help me

kamilya MIMOUNI
kamilya MIMOUNI el 26 de Oct. de 2019
function Test3
clear;close all; clc
% For starting
fprintf ( 1, '\n' );
fprintf ( 1, 'Test1:\n' );
fprintf ( 1, ' MATLAB version:\n' );
fprintf ( 1, ' A program to demonstrate the finite element method.\n' );
% Geometry data
rin = 0.2; rex = 1;
gd1 = [1;1.6;0;rex];
gd2 = [1;1.6;0;rin];
gd = [gd1,gd2];
ns = (char('Cext','Cint'))';
sf = 'Cext - Cint';
[dl, bt] = decsg(gd, sf, ns);
model = createpde;
geometryFromEdges(model,dl);
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
msh = generateMesh(model,'Hmax',0.05,'GeometricOrder','linear','Jiggle','on');
[p,e,t] = meshToPet(msh);
% [p,e,t] = refinemesh(dl,p,e,t);
% return
coordinates = p';
elements3 = t(1:3,:)';
Ne = findNodes(msh,'region','Edge',(1:4));
Ni = findNodes(msh,'region','Edge',(5:8));
neumann = [Ni(:),[Ni(2:end)';Ni(1)]];
dirichlet = [Ne(:),[Ne(2:end)';Ne(1)]];
BoundNodes = unique(dirichlet);
% Export Initial Data
load flux_initial.mat flux_initial resultss Nee
uintrp = interpolateSolution(resultss,p(1,:),p(2,:));
uintrp(Ne) = 1;
[uintrpx,uintrpy] = pdegrad(p,t,uintrp); % au centre des triangles
uintrpxn = pdeprtni(p,t,uintrpx); % au noeuds
uintrpyn = pdeprtni(p,t,uintrpy); % au noeuds
Nx = @(z)2*z(1,:);
Ny = @(z)2*z(2,:);
z = p(:,Ne);
nx = Nx(z); nx = nx(:);
ny = Ny(z); ny = ny(:);
epsilon = 3/10;
h_flux = 1./(sqrt(nx.^2+ny.^2).*sqrt(z(1,:)'.^2+z(2,:)'.^2).*uintrpxn(Ne).*nx+uintrpyn(Ne).*ny);
% Direct problem
RHS_step = zeros(size(elements3,1));
a_x = zeros(size(elements3,1));
c_x = zeros(size(elements3,1));
Control = zeros(size(neumann,1),1);
for j=1:size(elements3,1)
xc = sum(coordinates(elements3(j,:),:))/3;
RHS_step(j) = 0;
c_x(j) = 1./(1+epsilon*xc(1));
a_x(j) = 0;
end
psi_d = ones(size(BoundNodes,1),1); % fct g sur Gamma_ex
for j=1:size(neumann,1)
x_m = sum(coordinates(neumann(j,:),:))/2; % vecteur ligne: coordonnées du milieu du segment
Control(j) = 1; % le controle v sur Gamma_in
end
[psi,psi_flux] = Direct_Problem(elements3,neumann,coordinates,c_x,a_x,RHS_step,Control,psi_d,BoundNodes,p,t, ...
epsilon,nx,ny,Ne,z);
% Cost function
regu = 1/1000;
Integrand = psi_flux - h_flux;
Cost_J = Cost_Function(Control,Integrand,coordinates,Ne,Ni,rex,rin,regu);
if(Cost_J==0)
disp('Your intial guess v = 1 is exactely your solution')
disp('There is no need for optimization')
end
disp('fmincon start')
% options = optimoptions('fmincon','Display','iter','Algorithm','sqp','PlotFcns', ...
% {@optimplotfval,@optimplotfirstorderopt},'TolFun',4.0e-4);
% options = optimoptions(@fmincon,'GradObj','on','Display','iter','TolFun',1.0e-4, ...
% 'PlotFcns',{@optimplotfval,@optimplotfirstorderopt});
lb = 4.0e-2*ones(size(Control,1),1);
ub = 5*ones(size(Control,1),1);
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
problem.options = options;
problem.solver = 'fmincon';
problem.objective = @(u_epsilon)Moncef_Cost_Function(u_epsilon,elements3,neumann,coordinates,c_x,a_x,RHS_step, ...
BoundNodes,p,t,epsilon,nx,ny,Ne,Ni,z,rex,rin,regu,h_flux);
problem.x0 = Control;
problem.nonlcon = [];
Control_optimal = fmincon(problem)
Control_optimal = fmincon(@(u_epsilon)Moncef_Cost_Function(u_epsilon,elements3,neumann,coordinates,c_x,a_x,RHS_step, ...
BoundNodes,p,t,epsilon,nx,ny,Ne,Ni,z,rex,rin,regu,h_flux), ...
Control,[],[],[],[],lb,ub,[],options);
% Retour au probleme direct final
[psi,psi_flux] = Direct_Problem(elements3,neumann,coordinates,c_x,a_x,RHS_step,Control_optimal,psi_d,BoundNodes,p,t, ...
epsilon,nx,ny,Ne,z);
% ep = 0.2;
% Nb = findNodes(msh,'box',[-1-ep -1],[-0.5 0.5]);
%[i,c] = pdesdp(p,e,t,sdl);
figure(10)
pdemesh(model_initial)
hold on
plot(msh.Nodes(1,Nee),msh.Nodes(2,Nee),'or','MarkerFaceColor','g')
psi_full = full(psi);
psi_max = max(psi_full(Nee));
indice2 = find(psi_full<=psi_max+0.07 & psi_full>=psi_max-0.07);
k = convhull(p(1,indice2),p(2,indice2));
figure(12)
pdemesh(model)
hold on
plot(p(1,k),p(2,k),'r-')
figure(11)
pdegplot(model)
hold on
plot(msh.Nodes(1,indice2),msh.Nodes(2,indice2),'.r','MarkerFaceColor','r')

kamilya MIMOUNI
kamilya MIMOUNI el 26 de Oct. de 2019
function probleme_initial
close all; clear all; clc
R0 = 3/2;
a1 = 0.5;
N = 40;
angles = 0:2*pi/N:2*pi; angles = angles(1:end-1);
absi = (R0*sqrt(1+2*a1*cos(angles)/R0)-R0)./a1; absi = absi(:);
ord = a1*R0*sin(angles)./a1; ord = ord(:);
% Geometry data
poly = [absi,ord];
gd1 = [2;length(poly);poly(:,1);poly(:,2)];
abs = linspace(-1,1,N); abs = abs(end:-1:1);
abs = [abs,abs(end-1:-1:2)];
poly1 = [absi(:),ord(:)];
%======================================
ep = 0.1;
abs2 = [-1;-1;-1-ep;-1-ep];
ord2 = [-0.5;0.5;0.5;-0.5];
poly2 = [abs2,ord2];
gd2 = zeros(size(gd1));
gd2(1) = 2;
gd2(2) = length(poly2);
gd2(3:length(poly2(:,1))+2) = poly2(:,1);
gd2(length(poly2(:,1))+3:length(poly2(:,1))+2+length(poly2(:,2))) = poly2(:,2);
% gd2 = [2;length(poly2);poly2(:,1);poly2(:,2)];
%=============================================
gd3 = zeros(size(gd1)); gd3(1) = 1; gd3(4) = 2;
gd = [gd1,gd3];
ns = (char('D','Cext'))';
sf = 'Cext - D';
[dl, bt] = decsg(gd, sf, ns);
model= createpde;
geometryFromEdges(model,dl);
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
% return
applyBoundaryCondition(model,'dirichlet','Edge',(41:44),'h',1,'r',1);
% applyBoundaryCondition(model,'dirichlet','Edge',(1:198),'h',1,'r',1);
% applyBoundaryCondition(model,'dirichlet','Edge',(1:40),'h',1,'r',20);
% applyBoundaryCondition(model,'dirichlet','Edge',(1:40),'h',1,'r',40);
applyBoundaryCondition(model,'dirichlet','Edge',(1:40),'h',1,'r',50);
axis equal
msh = generateMesh(model,'Hmax',0.05,'GeometricOrder','linear','Jiggle','on');
[p,e,t] = meshToPet(msh);
z1 = p(:);
C=1./sqrt(z1(1,:)'.^2+z1(2,:)'.^2);
specifyCoefficients(model, 'm', 0, 'd', 0, 'c', C, 'a', 0, 'f', 0);
resultss = solvepde(model);
u= resultss.NodalSolution;
figure(3)
pdeplot(p, e, t, 'xydata', u, 'contour', 'on', 'mesh', 'off');
axis equal
ux = resultss.XGradients;
uy = resultss.YGradients;
Nee = findNodes(msh,'region','Edge',(41:44));
psi_fr = psi(Nee);
Nx = @(z) 2*z(1,:);
Ny = @(z) 2*z(2,:);
z = p(:,Nee);
nx = Nx(z); nx = nx(:);
ny = Ny(z); ny = ny(:);
Flux11 = (ux(Nee).*nx+uy(Nee).*ny)./sqrt(nx.^2+ny.^2);
Flux1 = Flux11./sqrt(z(1,:)'.^2+z(2,:)'.^2);
flux_initial = [z',Flux1];
save flux_initial.mat flux_initial resultss Nee

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by