solving 5 nonlinear equations

4 visualizaciones (últimos 30 días)
piyu
piyu el 9 de Jul. de 2017
Comentada: Alex Sha el 20 de Nov. de 2024
I want to solve five nonlinear equations for five unknowns. How to solve in matlab?
The equations are-
32.5=2*sqrt((a*b-e^2)/(a*((1/c)+2/(sqrt(a*b)+e))))
81=2*sqrt(sqrt((a^2-d^2)/(b((2/(a-d))+(2/(a+d)))))*(sqrt((a*b-e^2)/(a*((1/c)+2/(sqrt(a*b)+e))))))
230=b-(2*e^2/(a+d))
0.3=(b*d-e^2)/(b*a-e^2)
0.3=e/(a+d)
Thanks.

Respuesta aceptada

Star Strider
Star Strider el 9 de Jul. de 2017
If you have the Symbolic Math Toolbox, this will give you one set of solutions:
syms a b c d e
Eqns = [32.5 == 2*sqrt((a*b-e^2)/(a*((1/c)+2/(sqrt(a*b)+e))));
81 == 2*sqrt(sqrt((a^2-d^2)/(b*((2/(a-d))+(2/(a+d)))))*(sqrt((a*b-e^2)/(a*((1/c)+2/(sqrt(a*b)+e))))));
230 == b-(2*e^2/(a+d));
0.3 == (b*d-e^2)/(b*a-e^2);
0.3 == e/(a+d)];
[as,bs,cs,ds,es] = vpasolve(Eqns, [a,b,c,d,e])
All the solutions are complex, so they may have complex-conjugate solutions as well. I will leave you to explore those.
  4 comentarios
Walter Roberson
Walter Roberson el 10 de Jul. de 2017
Editada: Walter Roberson el 10 de Jul. de 2017
For example, if the final 0.3 were really 0.31 then the solution would change from
a = 259.1635046015543, b = 295.7619655879812, c = 1.064584012228195, d = 106.1807486650092, e = 109.6032759799690
to
a = 262.1789467186743, b = 301.4328240934383, c = 1.058495937853918, d = 109.4798675031687, e = 115.2142324087714
If you let the final 0.3 be 0.3+delta for some delta presumably in the range -0.05 to +0.05 (that is, you assume 0.3 is a rounded value instead of 3/10 exactly), then the final solution involves large numbers multiplied by powers of delta up to delta^50. For abs(delta) < 1 those terms get very small, but this gives you an ideal of how very important it is to not attempt to find exact solutions to equations that involve floating point numbers.
Alex Sha
Alex Sha el 20 de Nov. de 2024
This is an interesting problem. Try some case below:
1: Taking "3/10' as "-10", real number solution:
a: -1116.42814745858
b: -0.14494811265632
e: 11.5072474056132
c: -12.0995087597244
d: 1115.27742271802
2: Taking "3/10' as "-5", real number solution:
a: 616.406269419948
b: 1.27542919070194
e: 22.8724570809345
c: -26.5477709060796
d: -620.980760836136
3: Taking "3/10' as "0", real number solution:
a: 210.846823805096
b: 230
e: -5.50683766803909E-161
c: 1.16019523942894
d: 1.05335763282267E-160
4: Taking "3/10' as "0.1", real number solution:
a: 214.022434088449
b: 234.751776376541
e: 23.7588818827026
c: 1.148178022009
d: 23.5663847385774
5: Taking "3/10' as "0.2", real number solution:
a: 226.651538558968
b: 252.564957781941
e: 56.4123944548472
c: 1.11542080793499
d: 55.4104337152429
6: Taking "3/10' as "0.35", real number solution:
a: 291.915645771019
b: 337.717161812537
e: 153.881659732203
c: 1.03363195571106
d: 147.746239178151
7: Taking "3/10' as "0.5", real number solution:
a: 852.513827599216
b: 1023.08265336835
e: 793.08265336835
c: 0.926592791567609
d: 733.651479137491
8: Taking "3/10' as "1.5", real number solution:
a: 29.7882470501465
b: 20.1947124949364
e: -69.935095835023
c: -1.99496910118526
d: -76.4116442734963
9: Taking "3/10' as "3.5", real number solution:
a: 257.625789918568
b: 2.26431063362606
e: -32.5336699094821
c: 4.31690559130787
d: -266.92112417842
10: Taking "3/10' as "5.0", real number solution:
a: 409.404208509883
b: 0.853441216192337
e: -22.9146558784191
c: 2.11844107695153
d: -413.987139685574

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre GPU Computing en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by