How to perform stratified 10 fold cross validation for classification in MATLAB?
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Machine Learning Enthusiast
el 21 de Jul. de 2017
Comentada: uma
el 9 de Mayo de 2022
My implementation of usual K-fold cross-validation is pretty much like:
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end
But To ensure that the training, testing, and validating dataset have similar proportions of classes (e.g., 20 classes).I want use stratified sampling technique.Basic purpose is to avoid class imbalance problem.I know about SMOTE technique but i want to apply this one.
3 comentarios
Respuesta aceptada
Tom Lane
el 25 de Jul. de 2017
If you have the Statistics and Machine Learning Toolbox, consider the cvpartition function. It can define stratified samples.
3 comentarios
Más respuestas (1)
ashik khan
el 18 de Nov. de 2018
What are the value of B and T_new1 ??
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end
0 comentarios
Ver también
Categorías
Más información sobre Get Started with Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!