Find critical points of a function with two variables
19 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I'm trying to find critical points to this function but it is so long that when i try to run this:
syms x y z
eqns = (120./((3*x+12).^2+(3*y+8).^2+20))-(240./((3*x-9).^2+(3*y+1).^2+10))-(360./((3*x+12).^2+(3*y-1).^2+13))+(480./((3*x-9).^2+(3*y-8).^2+17));
dx = diff(eqns,x)== 0 %=(240(18x-54))/((3x-9)^2+(3y+1)^2+10)^2-(480(18x 54))/((3x-9)^2+(3y-8)^2+17)^2+(360(18x+72))/((3x+12)^2+(3y-1)^2+13)^2-(120(18x+72))/((3x+12)^2+(3y+8)^2+20)^2
dy = diff(eqns,y)== 0% =(240(18y+6))/((3x-9)^2+(3y+1)^2+10)^2+(360(18y-6))/((3x+12)^2+(3y-1)^2+13)^2-(480(18y-48))/((3x-9)^2+(3y-8)^2+17)^2-(120(18y+48))/((3x+12)^2+(3y+8)^2+20)^2
[xcr,ycr]=solve(dx,dy); [xcr,ycr]
I get a spinning blue ball that goes forever
the domain is -10<x<10 -10<y<10
4 comentarios
Respuestas (1)
Walter Roberson
el 31 de Jul. de 2017
The key is two-fold:
syms x y real
eqns = (120./((3*x+12).^2+(3*y+8).^2+20))-(240./((3*x-9).^2+(3*y+1).^2+10))-(360./((3*x+12).^2+(3*y-1).^2+13))+(480./((3*x-9).^2+(3*y-8).^2+17));
dx = diff(eqns,x);
dy = diff(eqns,y);
sol = vpasolve([dx,dy])
This is fairly fast, and gives sol.x and sol.y with 6 solutions each. You can then
subs(dx,{x,y},{sol.x,sol.y})
subs(dy,{x,y},{sol.x,sol.y})
and see that the derivatives are very close to 0. The exception is at
x = -4.4546625928986563919737615802286
y = -9.5289449194003238929219876399778
which is a point at which the derivatives are steep enough to give numeric problems. This also happens to be the location that my other tests had been finding. It appears that point is a saddle point.
FF = subs(eqns,sol);
fsurf(eqns,[-10 10 -10 10]);
hold on
scatter3(sol.x,sol.y,FF,30,'r+')
You can see two local minima, two local maxima, and 2 saddle points. (I would not be surprised if there were more saddle points that this process does not locate.)
0 comentarios
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!