my output is not simplified to one number
52 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Abdulaziz
el 12 de Abr. de 2012
Editada: HIMANSHU GAUTAM
el 17 de Jun. de 2020
Hi guys,
I need help with this issue please.
my output are not simplified at all. For example on of the outputs is
>> P(1)
ans =
(3931879*sin(exp(1) - 2))/4000000 - (1862469*sin(exp(2) - 2))/80000000 + (45497457*sin(exp(1/3) - 2))/40000000 - (18734247*sin(exp(2/3) - 2))/16000000 - (8607627*sin(exp(4/3) - 2))/16000000 + (6776217*sin(exp(5/3) - 2))/40000000 - (35386911*sin(1))/80000000
This all in on line i should has a one number instead of all this long expression
Best,
0 comentarios
Respuesta aceptada
Walter Roberson
el 12 de Abr. de 2012
vpa(P(1))
if you want to evaluate to a symbolic number with some number of decimal places.
double(P(1))
if you want to evaluate to a double precision floating point number.
Más respuestas (5)
Geoff
el 12 de Abr. de 2012
Looks like you want:
A .* sin(exp(B) - 2) ./ C;
Where:
A = [3931879, -1862469, 45497457, -18734247, ...];
B = [1, 2, 1/3, 2/3, ...];
C = [4, 80, 40, 16, ...] * 1e6;
[edit]
Oh, I think you mean you want:
>> eval(P(1))
ans =
-0.8428
2 comentarios
Walter Roberson
el 7 de Jul. de 2019
You should never eval() a symbolic expression. Symbolic expressions are in a language that is not MATLAB.
Tomi Asli
el 6 de Jul. de 2019
Hi,
I have a similar problem, however the accepted answer will not work:
solving for x at an intersection of a linear function with a 4th order polynomial function
>> syms a b c d e m t x
>> eqn = t+m*x == a+b*x+c*x^2+d*x^3+e*x^4
>> fforx = solve(eqn, x, "MaxDegree", 4)
results in the expected output.
with the parameters for the variables
t = -120.07208, m = -0.80227, a = 0.77755, b = 0.00161, c = 1.46526E-6, d = 7.15449E-8, e = 2.88799E-10
the second solution of fforx gives an expected value of -150.2553.
However the precedure to get this value is a two step procedure:
>> fforx (2)
ans =
(3*6^(1/2)*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))*(3*3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2) + 2*(c/e - (3*d^2)/(8*e^2))^3 + 27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 72*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2) - 12*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2) - 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3)*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2) - (c/e - (3*d^2)/(8*e^2))^2*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2) - 12*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3)*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2))^(1/2)/(6*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/6)*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/4)) - d/(4*e) - ((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2)/(6*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/6))
>> (3*6^(1/2)*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))*(3*3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2) + 2*(c/e - (3*d^2)/(8*e^2))^3 + 27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 72*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2) - 12*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2) - 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3)*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2) - (c/e - (3*d^2)/(8*e^2))^2*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2) - 12*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3)*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2))^(1/2)/(6*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/6)*((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/4)) - d/(4*e) - ((c/e - (3*d^2)/(8*e^2))^2 + 9*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(2/3) - 6*(c/e - (3*d^2)/(8*e^2))*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/3) + (12*(a - t))/e - (9*d^4)/(64*e^4) - (3*d*(b - m))/e^2 + (3*c*d^2)/(4*e^3))^(1/2)/(6*((3^(1/2)*(27*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^4 + 128*(c/e - (3*d^2)/(8*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^2 - 256*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3))^3 + 4*(c/e - (3*d^2)/(8*e^2))^3*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2 - 16*(c/e - (3*d^2)/(8*e^2))^4*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)) - 144*(c/e - (3*d^2)/(8*e^2))*((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))^(1/2))/18 + (c/e - (3*d^2)/(8*e^2))^3/27 + ((b - m)/e + d^3/(8*e^3) - (c*d)/(2*e^2))^2/2 - (4*(c/e - (3*d^2)/(8*e^2))*((a - t)/e - (3*d^4)/(256*e^4) - (d*(b - m))/(4*e^2) + (c*d^2)/(16*e^3)))/3)^(1/6))
ans =
-150.2553
how do I avoid this? Is there a way to directly compute the number? vpa and double will not work..
The output as a rather long expression in the first time prevents further calculations as I want to use the rather long partial derivations of these expression to make an error calculation. The long outputs then result in that the output exceeds the maximum line length for the command window display, which leads to an early end...
A direct computation of the values instead of the output of these expressions would help here I think...
2 comentarios
Tomi Asli
el 8 de Jul. de 2019
Thank you very much!
using subs() and vpa() together, no matter which one first, gave the solution!
HIMANSHU GAUTAM
el 16 de Jun. de 2020
I think this is quiet relevent thread to post my question. Although I have asked same question elsewhere. I am solving an integral equation but command window just prints the expression, rather it should print numerical result.
height = 2.5; % in units of meter.
a=5; % considering square room of area 20*20 meter^2.
area=4*a^2;
psi_FOV = 30*pi/180;
psi_half = 60*pi/180;
m = -log10(2)/log10(cos(psi_half));
alpha = (m+1)*height^(m+1)/(2*pi);
K = alpha^2;
N = (1e-20)/K;
r_fov_anlytical = height*tan(psi_FOV);
d_fov_anlytical = height/cos(psi_FOV);
beta = (m+3);
height = 2.5;
% lambdaaxis= .05:.01:1;
% avgSINR=zeros(1,length(lambdaaxis));
% for lambdaIdx=1:length(lambdaaxis)
syms x y z;
ons= (vpaintegral(vpaintegral(exp(-2.*pi.*.05.*vpaintegral((z - z.*exp ((-y.*N.*(sin( psi_FOV )).^4)./((x.^2+height^2 ).^(-beta))) ...
.*exp ((-y.*( z.^2+ height.^2) .^( - beta))./(( x.^2+height.^2).^(-beta)))),z,x,r_fov_anlytical)) ...
.*exp(- .05.*pi.*(x).^2).*(2.*pi).*.05.*x,y,0,inf),x,0,r_fov_anlytical))
% lambdaIdx
Command window output:
ons =
vpaintegral(vpaintegral((x*pi*exp(-(pi*vpaintegral(z - z*exp(-(y*(x^2 + 25/4)^4)/(z^2 + 25/4)^4)*exp(-(3358452346175993*y*(x^2 + 25/4)^4)/21267647932558653966460912964485513216), z, x, (5*3^(1/2))/6))/10)*exp(-(pi*x^2)/20))/10, y, 0, Inf), x, 0, (5*3^(1/2))/6)
I tried to use double,vpa, subs, but nothing worked.
3 comentarios
Walter Roberson
el 16 de Jun. de 2020
I noticed you deleted your Question. I had not responded there because I did not have any results for you as yet, but I was working on it.
HIMANSHU GAUTAM
el 17 de Jun. de 2020
Editada: HIMANSHU GAUTAM
el 17 de Jun. de 2020
Yes, I deleted it because someone commented that I shouln't post multiple question. Although I have asked new question covering all the aspect of that question. Thank you for the reply. It would help me if you can share your findings, here or at the new question, that I asked.
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!