Speed up fminbnd using vectorization
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Luca Gagliardone
el 12 de Ag. de 2017
I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca
0 comentarios
Respuesta aceptada
Matt J
el 12 de Ag. de 2017
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.
0 comentarios
Más respuestas (2)
Nick Durkee
el 24 de Mayo de 2018
Editada: Matt J
el 24 de Mayo de 2018
I actually developed a solution to this problem for my research. It's available on the file exchange.
0 comentarios
Ver también
Categorías
Más información sobre Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!