How to fit Plane (z=ax+by+c) to 3D point cloud data?

65 visualizaciones (últimos 30 días)
Swati Jain
Swati Jain el 22 de Sept. de 2017
Comentada: Stephen el 29 de Jun. de 2020
Hi, I am trying to do plane fit to 3D point data. Point cloud file is attached. Here is my code I tried using least square method
clc;
clear all;
close all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%reading %%%%%%%%%
arr = step_mask('Step_scan01_ex.xlsx','Sheet1', 'A:C');
%subplot(1,3,1)
x=arr(:,1);
y=arr(:,2);
z=arr(:,3)
plot3(arr(:,1),arr(:,2),arr(:,3),'.'); grid on
xlabel('x(mm)'); ylabel('y(mm)'); zlabel('z(mm)');
title('Masked plot');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%least squares method %%%%%%%%%%%
[xnum,ynum]=size(arr);
%
for i = 1: xnum
xz (i) = x (i) * z (i);
yz (i) = y (i) * z (i);
xy (i) = x (i) * y (i);
end
Sxz = sum (sum (xz));
Syz = sum (sum (yz));
Sz = sum (sum (z));
Sxy = sum (sum (xy));
Sx = ynum*sum (x);
Sy = sum (y);
Sx2 = sum (x.^2);
Sy2 = sum (y.^2);
A = [Sx2 Sxy Sx; Sxy Sy2 Sy; Sx Sy xnum * ynum];
Z = [Sxz; Syz; Sz];
W = A \ Z;
w1 = W (1);
w2 = W (2);
w3 = W (3);
l = - w1/(w1^2 + w2^2 + 1)^0.5;
m = - w2/(w1^2 + w2^2 + 1)^0.5;
n = 1/(w1^2 + w2^2 + 1)^0.5;
p = w3/(w1^2 + w2^2 + 1)^0.5;
%%%%%%%%%%%%%%%%Generating and displaying the obtained plane %%%%%%%%%
z_2=zeros(7340,1);
for i = 1: xnum
z_2(i)=(-l/n)*x(i)+(-m/n)*y(i)+(p/n);
i=i+1;
end
a=-l/n;
b=-m/n;
c=p/n;
averagev = sum(sum(z_2))/(xnum * ynum);
figure;
plot3(x,y,z_2,'.'); grid on
xlabel('x'); ylabel('y'); zlabel('z(mm)');
title('Fitted Plane');
sa = abs(z-z_2);
figure;
plot3(x,y,sa,'.'); grid on
xlabel('x'); ylabel('y'); zlabel('z(mm)');
title('Substracted Plane');
Result of this code is not looking fine to me. Could anyone please suggest what is the best way to fit plane with 3D pint data?

Respuesta aceptada

Star Strider
Star Strider el 22 de Sept. de 2017
Try this:
arr = xlsread('Step_scan01_ex.xls');
x=arr(:,1);
y=arr(:,2);
z=arr(:,3);
DM = [x, y, ones(size(z))]; % Design Matrix
B = DM\z; % Estimate Parameters
[X,Y] = meshgrid(linspace(min(x),max(x),50), linspace(min(y),max(y),50));
Z = B(1)*X + B(2)*Y + B(3)*ones(size(X));
figure(1)
plot3(arr(:,1),arr(:,2),arr(:,3),'.')
hold on
meshc(X, Y, Z)
hold off
grid on
xlabel('x(mm)'); ylabel('y(mm)'); zlabel('z(mm)');
title('Masked plot');
grid on
text(-20, 50, 450, sprintf('Z = %.3f\\cdotX %+.3f\\cdotY %+3.0f', B))
  5 comentarios
Stephen
Stephen el 29 de Jun. de 2020
Is this fitting mechanism using orthogonal distance regression, instead of just minimizing the error in Z direction?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Interpolation en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by