Estimate confidence intervals after regress!

1 visualización (últimos 30 días)
Panos Ale
Panos Ale el 26 de Sept. de 2017
Comentada: Star Strider el 21 de Nov. de 2021
Hallo I did a linear regression using the command [B,BINT,R,RINT,STATS] = regress(Y,X)! How can estimate the confidence intervals??

Respuesta aceptada

Star Strider
Star Strider el 26 de Sept. de 2017
The ‘BINT’ matrix contains the parameter confidence intervals.
If you want both parameter and prediction confidence intervals, use fitlm:
x = (1:10)'; % Create Data
y = 1.5 + 2.3*x + 1.5*randn(size(x)); % Create Data
mdl = fitlm(x, y); % Fit Data
B = mdl.Coefficients.Estimate; % Coefficients
CI = coefCI(mdl); % Coefficient Confidence Intervals
[Ypred,YCI] = predict(mdl, x); % Fitted Regression Line & Confidence Intervals
figure(1)
plot(x, y, 'pg')
hold on
plot(x, Ypred,'-r', x, YCI, '--r')
hold off
grid
  2 comentarios
Jasmin McInerney
Jasmin McInerney el 21 de Nov. de 2021
Thank you!
This answer shows how you can plot the confidence intervals with the traditional plotting command and associated functionality wich is super helpful :)
summary from Star Strider's answer:
after you've created your linear regression model ...
CI = coefCI(mdl); % Coefficient Confidence Intervals
[Ypred,YCI] = predict(mdl, x); % Fitted Regression Line & Confidence Intervals
figure
plot(x, YCI, '--r') % Plotting the confidence intervals!!
Star Strider
Star Strider el 21 de Nov. de 2021
My pleasure!
Be sure to plot ‘Ypred’ as well. That provides a context for the confidence intervals.
.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by