Squeezenet model not training in MatlabR2017b.

3 visualizaciones (últimos 30 días)
BHUSHAN MUTHIYAN
BHUSHAN MUTHIYAN el 12 de Oct. de 2017
Editada: BHUSHAN MUTHIYAN el 19 de Nov. de 2017
Hello,
I have generated a Squeezenet basic model(vanilla) using Matlab R2017b. I am having exactly same implementation as it is in the Squeezenet implementation using Caffe.
Below is my Matlab code: I am using image datastore object with 10 classes "indsRand10.mat" which is subset of ImageNet dataset.
%%Squeezenet network
%%--Bhushan Muthiyan
imdbPath = fullfile(pwd, 'indsRand10.mat') ;
if exist(imdbPath, 'file')
imdb = load(imdbPath) ;
trainingNumFiles = 768;
valNumFiles = 64;
rng(1) % For reproducibility
[imdb.trainDigitData, imdb.testDigitData] = splitEachLabel(imdb.imdsTrain, ...
trainingNumFiles,'randomize');
[imdb.testDigitData, a] = splitEachLabel(imdb.testDigitData, ...
valNumFiles,'randomize');
end
numImages = numel(imdb.trainDigitData.Files);
idx = randperm(numImages,20);
for i = 1:20
subplot(4,5,i)
I = readimage(imdb.trainDigitData, idx(i));
imshow(I)
end
numClasses = numel(categories(imdb.trainDigitData.Labels));
layers = [
imageInputLayer([224 224 3],'Name','input')
convolution2dLayer(7,96,'Padding','same','Stride',2,'Name','conv_1')
reluLayer('Name','relu_1')
maxPooling2dLayer(3,'Stride',2,'Name','pool_1')
%%fire 2
convolution2dLayer(1,16,'Padding','same','Stride',1,'Name','conv_2')
reluLayer('Name','relu_11')
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_3')
reluLayer('Name','relu_2')
depthConcatenationLayer(2,'Name','concat_1')
%%fire 3
convolution2dLayer(1,16,'Padding','same','Stride',1,'Name','conv_6')
reluLayer('Name','relu_12')
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_7')
reluLayer('Name','relu_3')
depthConcatenationLayer(2,'Name','concat_3')
maxPooling2dLayer(3,'Stride',2,'Name','pool_2')
%%fire 4
convolution2dLayer(1,32,'Padding','same','Stride',1,'Name','conv_9')
reluLayer('Name','relu_13')
convolution2dLayer(1,128,'Padding','same','Stride',1,'Name','conv_10')
reluLayer('Name','relu_4')
depthConcatenationLayer(2,'Name','concat_5')
%%fire 5
convolution2dLayer(1,32,'Padding','same','Stride',1,'Name','conv_12')
reluLayer('Name','relu_14')
convolution2dLayer(1,128,'Padding','same','Stride',1,'Name','conv_13')
reluLayer('Name','relu_5')
depthConcatenationLayer(2,'Name','concat_6')
maxPooling2dLayer(3,'Stride',2,'Name','pool_3')
%fire 6
convolution2dLayer(1,48,'Padding','same','Stride',1,'Name','conv_15')
reluLayer('Name','relu_15')
convolution2dLayer(1,192,'Padding','same','Stride',1,'Name','conv_16')
reluLayer('Name','relu_6')
depthConcatenationLayer(2,'Name','concat_8')
%%fire 7
convolution2dLayer(1,48,'Padding','same','Stride',1,'Name','conv_18')
reluLayer('Name','relu_16')
convolution2dLayer(1,192,'Padding','same','Stride',1,'Name','conv_19')
reluLayer('Name','relu_7')
depthConcatenationLayer(2,'Name','concat_9')
%fire 8
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_21')
reluLayer('Name','relu_17')
convolution2dLayer(1,256,'Padding','same','Stride',1,'Name','conv_22')
reluLayer('Name','relu_8')
depthConcatenationLayer(2,'Name','concat_11')
% fire 9
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_24')
reluLayer('Name','relu_18')
convolution2dLayer(1,256,'Padding','same','Stride',1,'Name','conv_25')
depthConcatenationLayer(2,'Name','concat_12')
%reluLayer('Name','relu_9')
dropoutLayer(0.5,'Name','Drop_1')
convolution2dLayer(1,numClasses,'Padding','same','Stride',1,'Name','conv_27')
reluLayer('Name','relu_9')
averagePooling2dLayer(13,'Stride',1,'Name','avg_pool_4')
%reluLayer('Name','relu_10')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers);
figure
plot(lgraph)
conv_4 = convolution2dLayer(3,64,'Padding',1,'Stride',1,'Name','conv_4');
lgraph = addLayers(lgraph,conv_4);
conv_8 = convolution2dLayer(3,64,'Padding',1,'Stride',1,'Name','conv_8');
lgraph = addLayers(lgraph,conv_8);
conv_11 = convolution2dLayer(3,128,'Padding',1,'Stride',1,'Name','conv_11');
lgraph = addLayers(lgraph,conv_11);
conv_14 = convolution2dLayer(3,128,'Padding',1,'Stride',1,'Name','conv_14');
lgraph = addLayers(lgraph,conv_14);
conv_17 = convolution2dLayer(3,192,'Padding',1,'Stride',1,'Name','conv_17');
lgraph = addLayers(lgraph,conv_17);
conv_20 = convolution2dLayer(3,192,'Padding',1,'Stride',1,'Name','conv_20');
lgraph = addLayers(lgraph,conv_20);
conv_23 = convolution2dLayer(3,256,'Padding',1,'Stride',1,'Name','conv_23');
lgraph = addLayers(lgraph,conv_23);
conv_26 = convolution2dLayer(3,256,'Padding',1,'Stride',1,'Name','conv_26');
lgraph = addLayers(lgraph,conv_26);
relu_19 = reluLayer('Name','relu_19');
lgraph = addLayers(lgraph,relu_19);
relu_20 = reluLayer('Name','relu_20');
lgraph = addLayers(lgraph,relu_20);
relu_21 = reluLayer('Name','relu_21');
lgraph = addLayers(lgraph,relu_21);
relu_22 = reluLayer('Name','relu_22');
lgraph = addLayers(lgraph,relu_22);
relu_23 = reluLayer('Name','relu_23');
lgraph = addLayers(lgraph,relu_23);
relu_24 = reluLayer('Name','relu_24');
lgraph = addLayers(lgraph,relu_24);
relu_25 = reluLayer('Name','relu_25');
lgraph = addLayers(lgraph,relu_25);
relu_26 = reluLayer('Name','relu_26');
lgraph = addLayers(lgraph,relu_26);
lgraph = connectLayers(lgraph,'relu_11','conv_4');
lgraph = connectLayers(lgraph,'conv_4','relu_19');
lgraph = connectLayers(lgraph,'relu_19','concat_1/in2');
lgraph = connectLayers(lgraph,'relu_12','conv_8');
lgraph = connectLayers(lgraph,'conv_8','relu_20');
lgraph = connectLayers(lgraph,'relu_20','concat_3/in2');
lgraph = connectLayers(lgraph,'relu_13','conv_11');
lgraph = connectLayers(lgraph,'conv_11','relu_21');
lgraph = connectLayers(lgraph,'relu_21','concat_5/in2');
lgraph = connectLayers(lgraph,'relu_14','conv_14');
lgraph = connectLayers(lgraph,'conv_14','relu_22');
lgraph = connectLayers(lgraph,'relu_22','concat_6/in2');
lgraph = connectLayers(lgraph,'relu_15','conv_17');
lgraph = connectLayers(lgraph,'conv_17','relu_23');
lgraph = connectLayers(lgraph,'relu_23','concat_8/in2');
lgraph = connectLayers(lgraph,'relu_16','conv_20');
lgraph = connectLayers(lgraph,'conv_20','relu_24');
lgraph = connectLayers(lgraph,'relu_24','concat_9/in2');
lgraph = connectLayers(lgraph,'relu_17','conv_23');
lgraph = connectLayers(lgraph,'conv_23','relu_25');
lgraph = connectLayers(lgraph,'relu_25','concat_11/in2');
lgraph = connectLayers(lgraph,'relu_18','conv_26');
lgraph = connectLayers(lgraph,'conv_26','relu_26');
lgraph = connectLayers(lgraph,'relu_26','concat_12/in2');
figure
plot(lgraph);
optionsTransfer = trainingOptions('sgdm', ...
'MaxEpochs',25, ...
'MiniBatchSize',64,...
'InitialLearnRate',0.04,...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress',...
'ExecutionEnvironment','auto');
netTransfer = trainNetwork(imdb.trainDigitData,lgraph,optionsTransfer);
YPred = classify(netTransfer,imdb.testDigitData);
YTest = imdb.testDigitData.Labels;
accuracy = sum(YPred==YTest)/numel(YTest);
fprintf('accuracy = %f\n',accuracy);
numImages = numel(imdb.testDigitData.Files);
idx = randperm(numImages,20);
for i = 1:20
subplot(4,5,i)
I = readimage(imdb.testDigitData, idx(i));
imshow(I)
end
Can someone let me know the reason behind this.
Enclosed here is the image of Squeezenet vanilla model structure.

Respuestas (1)

Mickaël Tits
Mickaël Tits el 14 de Nov. de 2017
Hi,
If I understand, you are trying to train your Squeezenet model from scratch, with 768 images ? You need a pretrained model if you want a chance that it works.
You can get here a pretrained SqueezeNet, and use it for transfer learning as you want : https://github.com/titsitits/Squeezenet-Matlab-Keras
Mickaël Tits
  1 comentario
BHUSHAN MUTHIYAN
BHUSHAN MUTHIYAN el 19 de Nov. de 2017
Editada: BHUSHAN MUTHIYAN el 19 de Nov. de 2017
Hello Mickaël,
I had a look to the link provided by you.
But, the .json file description says that the Keras model generated above has first convolution layer 3x3x64 whereas the original Keras implementation in Caffe has dimension 7x7x96 filter.
Can you please provide me with the exact implementation of Squeezenet model (.h5 file) which matches with original squeezenet implemetation.
Thanks!!

Iniciar sesión para comentar.

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by