How can I solve the equation of curvature on PDE Toolbox?

1 visualización (últimos 30 días)
Sarojeet Deb
Sarojeet Deb el 25 de Oct. de 2017
Comentada: Precise Simulation el 31 de Oct. de 2017
The equation is ∇n̂=2*curvature, Curvature is a constant
n̂ = ∇f/∥∇f∥ (Unit normal)
Here f is f(x,y)
I made the geometry in PDE Toolbox, meshed it and inputted the values in PDE Toolbox. But I am unable to input ∥∇f∥. I want to be ||∇f||= sqrt(x^2+y^2+u^2)

Respuestas (1)

Precise Simulation
Precise Simulation el 26 de Oct. de 2017
Editada: Precise Simulation el 29 de Oct. de 2017
∥∇f∥ should typically be sqrt(fx^2+fy^2+eps) where eps is a small constant to avoid divisions by zeros (since ∥∇f∥ is in the denominator). As this look like a Hamilton-Jacobi distance function problem another approach would be to transform the equation to a time dependent one, which should be somewhat easier to solve.
  2 comentarios
Sarojeet Deb
Sarojeet Deb el 30 de Oct. de 2017
Shouldn't it be sqrt(ux^2+uy^2+eps) instead?
Precise Simulation
Precise Simulation el 31 de Oct. de 2017
Yes, if your function 'f' is labelled 'u' in the pde implementation.

Iniciar sesión para comentar.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by