How can I solve the equation of curvature on PDE Toolbox?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
The equation is ∇n̂=2*curvature, Curvature is a constant
n̂ = ∇f/∥∇f∥ (Unit normal)
Here f is f(x,y)
I made the geometry in PDE Toolbox, meshed it and inputted the values in PDE Toolbox. But I am unable to input ∥∇f∥. I want to be ||∇f||= sqrt(x^2+y^2+u^2)
0 comentarios
Respuestas (1)
Precise Simulation
el 26 de Oct. de 2017
Editada: Precise Simulation
el 29 de Oct. de 2017
∥∇f∥ should typically be sqrt(fx^2+fy^2+eps) where eps is a small constant to avoid divisions by zeros (since ∥∇f∥ is in the denominator). As this look like a Hamilton-Jacobi distance function problem another approach would be to transform the equation to a time dependent one, which should be somewhat easier to solve.
2 comentarios
Precise Simulation
el 31 de Oct. de 2017
Yes, if your function 'f' is labelled 'u' in the pde implementation.
Ver también
Categorías
Más información sobre Geometry and Mesh en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!