How do I plot a graph from the following code

1 visualización (últimos 30 días)
naygarp
naygarp el 28 de Oct. de 2017
Comentada: naygarp el 14 de Nov. de 2017
I need a graph of 'x vs y1' and 'x vs y0' as well as 'x vs y2', but the values of y0,y1,y2 has to be the iterated values.
% Fourth Runge Kutta for solving Blasius Equation
%-----------------------------------------------
%Blasius Equation : 2f"+ff'=0
%-----------------------------------------------
%Boundary Condition
%1. f'(0) = 0
%2. f'(inf) = 0
%3. f(0) = 0
%from shooting method
%4. f"(0) = 0.332
%-----------------------------------------------
%find: f,f" and f'''
%-----------------------------------------------
%Given
%eta = x
%f = y0,f'=y1,f"=y2,f'''= -(1/2)*y0*y2
%-----------------------------------------------
func1 = inline('y1','x','y0','y1','y2');
%-----------------------------------------------
func2 = inline('y2','x','y0','y1','y2');
%-----------------------------------------------
func3 = inline('-0.5*y0*y2','x','y0','y1','y2');
%-----------------------------------------------
%input: x = 0 , y0 = 0 , y1= 0
% y2 = 0.332 , total = 7 and h = 0.1
%-----------------------------------------------
x = input('\n Enter the value of x : ');
y0 = input( 'Enter the value of y0 : ');
y1 = input( 'Enter the value of y1 : ');
y2 = input( 'Enter the value of y2 : ');
total = input('Enter the value of total : ');
h = input( 'Enter the value of h : ');
fprintf('\n Solution with step size =%5.3f is:',h);
fprintf('\n x y0 y1 y2');
fprintf('\n%16.3f%16.3f%16.3f%16.3f',x,y0,y1,y2);
for i = 1:(total/h)
ak1y0 = func1(x,y0,y1,y2);
ak1y1 = func2(x,y0,y1,y2);
ak1y2 = func3(x,y0,y1,y2);
xx = x + h/2.;
yy0 = y0 + h*ak1y0/2.;
yy1 = y1 + h*ak1y1/2.;
yy2 = y2 + h*ak1y2/2.;
ak2y0 = func1(xx,yy0,yy1,yy2);
ak2y1 = func2(xx,yy0,yy1,yy2);
ak2y2 = func3(xx,yy0,yy1,yy2);
yy0 = y0 + h*ak2y0/2.;
yy1 = y1 + h*ak2y1/2.;
yy2 = y2 + h*ak2y2/2.;
ak3y0 = func1(xx,yy0,yy1,yy2);
ak3y1 = func2(xx,yy0,yy1,yy2);
ak3y2 = func3(xx,yy0,yy1,yy2);
xx = x + h;
yy0 = y0 + h*ak3y0;
yy1 = y1 + h*ak3y1;
yy2 = y2 + h*ak3y2;
ak4y0 = func1(xx,yy0,yy1,yy2);
ak4y1 = func2(xx,yy0,yy1,yy2);
ak4y2 = func3(xx,yy0,yy1,yy2);
y0 = y0 + (ak1y0 + 2.*ak2y0 + 2.*ak3y0 + ak4y0)*h/6.;
y1 = y1 + (ak1y1 + 2.*ak2y1 + 2.*ak3y1 + ak4y1)*h/6.;
y2 = y2 + (ak1y2 + 2.*ak2y2 + 2.*ak3y2 + ak4y2)*h/6.;
x = x + h;
fprintf('\n%16.3f%16.3f%16.3f%16.3f',x,y0,y1,y2);
end

Respuesta aceptada

Walter Roberson
Walter Roberson el 28 de Oct. de 2017
all_x(i) = x;
all_y0(i) = y0;
all_y1(i) = y1;
all_y2(i) = y2;
Immediately before the x = x + h line.
Then after the loop,
plot(all_x, all_y0, 'k-', all_x, all_y1, 'b-', all_x, all_y2, 'g-')
  9 comentarios
naygarp
naygarp el 11 de Nov. de 2017
Ok thanks I got it, if I use '%16.5f instead of '%16.3f' in printf(), then the results displayed would be upto 5 decimal places
naygarp
naygarp el 14 de Nov. de 2017
Hey Walter, could you help me in modifying the above code for another similar equation if you are familiar with using shooting method and runge-kutta 4th order numerical technique?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by