Matlab functions for finding false acceptance rate????

10 visualizaciones (últimos 30 días)
saba
saba el 24 de Abr. de 2012
Editada: SGUNITN el 9 de Feb. de 2018
i want to calculate the false acceptance rate for a image data base.....can u plz help me with functions or code that i can use for this purpose. i have divided my data into training and testing set now i will do the comparison comparing 1 to n values and check the FAR but i dont know how to implement it...plz help
  1 comentario
Jan
Jan el 7 de Feb. de 2018
Editada: Jan el 7 de Feb. de 2018
Concerning the Copyright note in Sandeep Gupta's answer: See the MATLAB Central Terms of Use:
4. MATLAB Answers
You agree that all Content that you contribute to the MATLAB Answers
portion of MATLAB Central will be licensed under the Creative Commons
Attribution Share Alike 3.0 license.
As far as I know this is no conflict with a copyright claim, as long as it is not accompanied by any stricter conditions as the "CC BY-SA 3.0" license.

Iniciar sesión para comentar.

Respuestas (1)

SGUNITN
SGUNITN el 6 de Feb. de 2018
Editada: SGUNITN el 7 de Feb. de 2018
Please acknowledge to "Machine-learning-using-PRTools" project while using this code and use the link (https://www.researchgate.net/project/Machine-learning-using-PRTools) in the footnote.
The database, label and source code can be downloaded at https://www.researchgate.net/project/Machine-learning-using-PRTools
To generate the input data
genMDS = gendatm; %160 x 20
csvwrite('gendatm3Feb18.csv', genMDS.data);
And create the labels 160x1 array with 16 class of size 20.
Create a file name main.m
This is the main file containing 2 functions.
--------------------------------------------------------------------------
clear;
clc;
%genMDS = gendatm; %160 x 20
%csvwrite('gendatm3Feb18.csv', genMDS.data);
% scatterd(genMDS); % defines the plotting domain of interest
data = csvread('gendatm3Feb18.csv');
labels = csvread('labels8x20.csv'); % Read a 1 D labels 8 x 20
prData = prdataset(data, labels);
prData = setprior(prData,0);
prData(isnan(prData)) = 0;
%//////////////////////////////////////////////////////////////////////
nClasses = 8;
nTrainingSamples = 5;
nSamplesPerClass = 20;
[train, test] = gendat(prData, nTrainingSamples/nSamplesPerClass); % Here assign observations for
training
w = qdc(train); % the class names (labels) of train are stored in w
trueTrainingLabels = getlabels(w); % this routine shows labels
%plotc(w, 'col');
%hold on;
%scatterd(a); % defines the plotting domain of interest
FR = test*w; % classify test set
arrFRLabels = FR*labeld; % get the labels of the test objects
%disp([+d arrFRLabels]); % show the posterior probabilities and labels
weighted_average_error = FR*testc;
%///////////////////////////////////////////////////////////////////
prCM = test*w*classc; % Confusion Matrix
csvwrite('cm.csv', prCM.data);
csvwrite('true_label.csv', prCM.nlab);
csvwrite('est_label.csv', arrFRLabels);
% Calculate FRR that is the number of false rejected for each class.
FRR = fxGetFRR(arrFRLabels, nClasses, nSamplesPerClass-nTrainingSamples);
xlswrite('result.xls', FRR, 'FRR');
%///////////////////////////////////////////////////////////////////
% Attack Scenario
FAR = cell(nClasses+3, 3);
FAR(1,:) = {'Class', 'TRR', 'FAR'};
attackLabels = zeros((nClasses-1)*nSamplesPerClass, 1);
for c = 1:nClasses
attackLabels(1:nTotalAttacks, 1) = c;
% Exclude data between startRow and endRow
startExRow = (c-1)*nSamplesPerClass;
endExRow = startExRow + nSamplesPerClass + 1;
A = data(1:startExRow,:);
B = data(endExRow:nClasses*nSamplesPerClass,:);
attackData = vertcat(A,B);
prAttack = prdataset(attackData, attackLabels);
prAttack = setprior(prAttack,0);
prAttack(isnan(prAttack)) = 0;
trueAttackLabels = getlabels(prAttack);
% FAR
FA = prAttack*w;
arrFALabels = FA*labeld;
% Calculate FAR that is the number of false acceptance for each class.
FARperClass = fxGetFAR(arrFALabels, nClasses, nSamplesPerClass, c);
FAR(c+1,:) = FARperClass;
end
FAR{nClasses+2,1} = 'SUM';
FAR{nClasses+3,1} = 'PERCENTAGE';
for col = 2:3
sum = 0;
for c = 2:nClasses+1
sum = sum + FAR{c,col};
end
FAR{nClasses+2,col} = sum;
FAR{nClasses+3, col} = FAR{nClasses+2,col}/(nClasses*(nClasses-1)*nSamplesPerClass);
end
xlswrite('result.xls', FAR, 'FAR');
--------------------------------------------------------------------------------------------------
Second file, create a file name fxGetFRR.m
function FRR = fxGetFRR(arrLabels, aClasses, aObservations)
% FAR - False Rejection Rate is number of false rejections per class
% for a legitimate user.
FRR = cell(aClasses+3, 3);
FRR(1,:) = {'Class', 'TAR', 'FRR'};
for c = 1:aClasses
trueAccepts = 0;
for o = 1:aObservations
nCount = aObservations * (c-1) + o;
%fprintf('%d,%d\n', c, aLabels(nCount))
if arrLabels(nCount) == c
trueAccepts = trueAccepts + 1;
end
end
FRR(c+1,:) = {c, trueAccepts, aObservations - trueAccepts};
end
FRR{aClasses+2,1} = 'SUM';
FRR{aClasses+3,1} = 'PERCENTAGE';
for col = 2:3
sum = 0;
for c = 2:aClasses+1
sum = sum + FRR{c,col};
end
FRR{aClasses+2,col} = sum;
FRR{aClasses+3, col} = FRR{aClasses+2,col}/(aClasses*aObservations);
end
--------------------------------------------------------------------------------------------------
Third file, create a file name fxGetFAR.m
function FAR = fxGetFAR(arrLabels, aClasses, aObservations, aC)
% FAR - False acceptance rate is number of false acceptance per class
% for imposters.
nTotalObservations = (aClasses-1)*aObservations;
falseAccepts = 0;
for o = 1:nTotalObservations
if arrLabels(o) == aC
falseAccepts = falseAccepts + 1;
end
end
FAR = {aC, nTotalObservations - falseAccepts, falseAccepts};
  2 comentarios
Jan
Jan el 7 de Feb. de 2018
How is this code used? Neither the inputs files are provided, nor is it explained, what they should contain.
"sum" is used as name of a variable, which is an evergreen problem in the forum. The code can be simplified, e.g.:
falseAccepts = 0;
for o = 1:nTotalObservations
if arrLabels(o) == aC
falseAccepts = falseAccepts + 1;
end
end
can and should be replaced by:
falseAccept = sum(arrLabels(1:nTotalObservations) == aC);
Or
sum = 0;
for c = 2:nClasses+1
sum = sum + FAR{c,col};
end
by
S = sum([FAR{2:nClasses+1, col}]);
SGUNITN
SGUNITN el 9 de Feb. de 2018
Editada: SGUNITN el 9 de Feb. de 2018
Please refer to the link https://www.researchgate.net/project/Machine-learning-using-PRTools
I have uploaded the source file along with labels file. DataSet can be generated dynamically.
genMDS = gendatm; %160 x 20
Most of the modern compilers optimize the instruction. for example, in case of C++ if you write the instruction
if (1) {
// DO NOTHING
}
g++ compiler will optimize the program by excluding the redundant code like above.
I guess Matlab compiler can also take care of below type of code.
sum = 0;
for c = 2:nClasses+1
sum = sum + FAR{c,col};
end
I deliberately not have optimized my code. However, your suggestions are appreciated.

Iniciar sesión para comentar.

Categorías

Más información sobre Get Started with Optimization Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by