Interpolate value between arc

4 visualizaciones (últimos 30 días)
TS Low
TS Low el 19 de Nov. de 2017
Comentada: TS Low el 26 de Nov. de 2017
Note that now I have this function to create my arc
a=[1 1]; %P1
b=[9 9]; %P2
r=10; %radius
syms x y
[x,y]=solve((x-a(1))^2+(y-a(2))^2==r^2,(x-b(1))^2+(y-b(2))^2==r^2,x,y);
syms X Y
ezplot((X-x(1))^2+(Y-y(1))^2==r^2,[min(a(1),b(1)),max(a(1),b(1)), ...
min(a(2),b(2)),max(a(2),b(2))])
axis equal
ezplot((X-x(2))^2+(Y-y(2))^2==r^2,[min(a(1),b(1)),max(a(1),b(1)), ...
min(a(2),b(2)),max(a(2),b(2))])
axis equal
After plotting the arc, I need to know the points lie between the arc with random interpolate points n
How to do this?
  3 comentarios
TS Low
TS Low el 19 de Nov. de 2017
Editada: TS Low el 19 de Nov. de 2017
ok, i think u comment on my previous post too
the points lie between point A and B
In this case, which is (1,1) and (9,9)
Now i am going to give matlab interpolate number of 7 (example)
Then, the result i want should be
(1.788,2.566)
(2.566,2.888)
(...)
(...)
(...)
(...)
(8.777,8.888)
*[Just example, not true value]
Walter Roberson
Walter Roberson el 19 de Nov. de 2017
Those ezplot need to be changed to fimplicit

Iniciar sesión para comentar.

Respuestas (3)

Walter Roberson
Walter Roberson el 19 de Nov. de 2017
The equation you are using is a circle centered at x(1), y(1) with radius r. You know the endpoints; you can convert them into polar coordinates relative to the center. Now use linspace(first_theta, second_theta, 10) as the angle and r as the radius and put that through pol2cart, add x(1), y(1) to get the cartesian coordinates of the points of interest.
  9 comentarios
Walter Roberson
Walter Roberson el 22 de Nov. de 2017
Ah... I just tried again and this time ezplot worked, at least in R2017b. You could try changing to ezplot()
TS Low
TS Low el 26 de Nov. de 2017

Iniciar sesión para comentar.


Roger Stafford
Roger Stafford el 19 de Nov. de 2017
Editada: Walter Roberson el 19 de Nov. de 2017
I contend the right way to do that task is to calculate the center of the circular arc you have defined, and then generate the plotted arc using a varying angle that swings from the first point to the second point. You can carry out the desired interpolations in terms of values of this arc angle using 'interp1'.
You might be interested in the following "Answers" contribution:
(which I think was asked by you, TS Low.)
  1 comentario
Roger Stafford
Roger Stafford el 19 de Nov. de 2017
You should not expect the contributors who answer questions to do all your work for you. It should be sufficient to indicate the solution to difficulties you are facing. You should fill in the rest of the details yourself. Otherwise, how are you going to learn Matlab programming?

Iniciar sesión para comentar.


Image Analyst
Image Analyst el 19 de Nov. de 2017
Try spline(). See my attached demo.
  3 comentarios
Image Analyst
Image Analyst el 19 de Nov. de 2017
Of course you could use spline, but actually I think Walter's linspace idea is much simpler.
TS Low
TS Low el 20 de Nov. de 2017
thx bro

Iniciar sesión para comentar.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by