How to determine the size of an array of functions??

3 visualizaciones (últimos 30 días)
Timothy Corley
Timothy Corley el 27 de Nov. de 2017
Comentada: Timothy Corley el 27 de Nov. de 2017
F = @(x1,x2) [(4*x1^2-20*x1+x2^2/4+8) ; (x1*x2/2+2*x1-5*x2+8)]
J = @(x1,x2) [(8*x1-20) (x2/2) ; (x2/2+2) (x1/5-5)]
x0 = [ 1 2 3 4 ];
tol = 10^-5;
A = nargin(F);
B = nargin(J);
I would like to find the size of F & J because i will use those as inputs to my function and they will not be known. Something like:
[C D]=size(F)
[G H]=size(J)
would be excellent if it worked. At first I thought matlab didn't like doing the anonymous matrix thing I'm trying, but it evaluates the functions just fine if given an input like:
F(0,0)
will output:
[8 ; 8]
as it should.
So i tried evaluating the functions with 'A' and 'B' number of zeros, but didn't have much luck in figuring that out as an array is not what the functions input.
Any help would be greatly appreciated!
  3 comentarios
Timothy Corley
Timothy Corley el 27 de Nov. de 2017
You're right, my apologies. The function is intended to work only when x1,x2,...xn are scalar values, not matrices or vectors. So the size of the output will be equal to the size of the function matrix, 2x1 for F and 2x2 for J in this case. And those are the values I'd like to retrieve
Timothy Corley
Timothy Corley el 27 de Nov. de 2017
Editada: Timothy Corley el 27 de Nov. de 2017
Should mention here as well that x1,x2,...xn are intended as scalar values. So the size I want to retrieve is equal to the size of the matrix in function form, 2x1 for F and 2x2 for J in this case.
Tried to cheat and run it this way:
F = @(x1,x2) [(4*x1.^2-20*x1+x2.^2/4+8) ; (x1.*x2/2+2*x1-5*x2+8)];
J = @(x1,x2,x3) [(8*x1-20) (x2/2) ; (x2/2+2) (x1/5-5)];
A = nargin(F);
B = nargin(J);
C = zeros(1,A);
D = sprintf('%.0f,', C);
D = D(1:end-1);
D
% F(D)
The output of D is
ans =
'0,0'
if I could evaluate the function at (0,0,...,0) then the size function would do the job just fine, but the function call doesn't like that hahaha, maybe a technicality that can be avoided?

Iniciar sesión para comentar.

Respuesta aceptada

Stephen23
Stephen23 el 27 de Nov. de 2017
Editada: Stephen23 el 27 de Nov. de 2017
There is no general solution because the size of the output can depend on the inputs. Consider:
>> fun = @(x)x+2;
>> fun(1)
ans = 3
>> fun(1:5)
ans =
3 4 5 6 7
>> foo = @(x)zeros(1,x);
>> foo(2)
ans =
0 0
>> foo(7)
ans =
0 0 0 0 0 0 0
Even then it will only return the size for those given inputs. Consider:
>> baz = @(x,y)[x;y];
>> baz(3,2)
ans =
3
2
>> baz(3:6,2:5)
ans =
3 4 5 6
2 3 4 5
>> baz([1;2;3],4)
ans =
1
2
3
4
What size would you describe baz as returning?
The only robust solution is to call the functions with the inputs of the required size and measure the output size:
>> J = @(x1,x2) [(8*x1-20) (x2/2) ; (x2/2+2) (x1/5-5)];
>> size(J(0,0))
ans =
2 2
>> size(J(1:3,1:3))
ans =
2 6
Note how the size of the output from your function depends on the inputs!
  3 comentarios
Stephen23
Stephen23 el 27 de Nov. de 2017
Editada: Stephen23 el 27 de Nov. de 2017
Automatically adjusting for the number of input arguments is easy using a comma-separated list:
>> F = @(x1,x2) [(4*x1^2-20*x1+x2^2/4+8) ; (x1*x2/2+2*x1-5*x2+8)];
>> C = repmat({0},1,nargin(F));
>> size(F(C{:}))
ans =
2 1
and
>> J = @(x1,x2) [(8*x1-20) (x2/2) ; (x2/2+2) (x1/5-5)];
>> C = repmat({0},1,nargin(J));
>> size(J(C{:}))
ans =
2 2
Timothy Corley
Timothy Corley el 27 de Nov. de 2017
Exactly what I wanted!! Thanks a ton mate!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Logical en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by