Differential equation system in Optimization Toolbox

1 visualización (últimos 30 días)
Artyom
Artyom el 30 de Abr. de 2012
Hi, everyone.
I'm trying to solve dynamic programming problem. I have differential equation system like that one:
dydt = zeros(2,1);
dydt(1) = z(1);
dydt(2) = z(2)-z(1);
With constraints:
z>=0;
z(1)+z(2)<=x(2);
z(2)<=x(1);
x(2)>=0;
I must maximize x(2) on period T=5.
How can I optimize DES and find z with Optimization Toolbox?
Thank you.
  8 comentarios
Richard Brown
Richard Brown el 30 de Abr. de 2012
Are the z variables constrained to take on integer values?
Artyom
Artyom el 30 de Abr. de 2012
No, it can take any values. Except constraints of course.

Iniciar sesión para comentar.

Respuestas (1)

Richard Brown
Richard Brown el 1 de Mayo de 2012
Your problem is a linear program in the arrays x1, x2, z1, z2. Because the RHS of the ODEs is piecewise constant, the problem can be reformulated as a series of difference equations. You therefore have the following linear equality constraints:
k = 0, ..., 4:
x1[k+1] = x1[k] + z1[k]
x2[k+1] = x2[k] + z2[k] - z1[k]
where x1[0] and x2[0] are known initial conditions
And you have the following linear inequality constraints:
k = 0, ..., 4:
z1[k] >= 0
z2[k] >= 0
z1[k] + z2[k] <= x2[k]
z2[k] <= x1[k]
z2[k] - z1[k] >= -x2[k]
Your cost is also linear:
c(z1, z2, x1, x2) = x2[5]
All of this defines a linear program that you can solve with linprog. All you require is a little bookkeeping to formulate the constraint matrices (and conversion to ones-based indexing)

Categorías

Más información sobre Linear Programming and Mixed-Integer Linear Programming en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by