Is it necessary to normalize a training data for KPCA?

2 visualizaciones (últimos 30 días)
K M Ibrahim Khalilullah
K M Ibrahim Khalilullah el 5 de Dic. de 2017
Respondida: Aditya el 25 de Mzo. de 2025
I download some code from matlab file exchange. But nobody ensures about the data normalization that the data has zero-mean(approximately). The link to the code of matlab file exchange is here: https://www.mathworks.com/matlabcentral/fileexchange/39715-kernel-pca-and-pre-image-reconstruction

Respuestas (1)

Aditya
Aditya el 25 de Mzo. de 2025
Hi,
Yes, it is generally necessary to normalize your training data before applying Kernel Principal Component Analysis (KPCA). Normalization is an important preprocessing step for several reasons:
  • Scale Sensivity
  • Kernel Function behaviour
  • Improved Convergence

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by