net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn);
[x_tr,xi_tr,ai_tr,t_tr] = preparets(net,{},{},trainSeries);
net.divideFcn = 'divideblock';
net.divideParam.trainRatio = 100/100;
net.performFcn = 'mse';
net.plotFcns = {'plotperform','plottrainstate', 'ploterrhist', ...
'plotregression', 'plotresponse', 'ploterrcorr', 'plotinerrcorr'};
assignin('base','hiddenLayerSize',hiddenLayerSize);
[net,tr] = train(net,x_tr,t_tr,xi_tr,ai_tr);
y_tr = net(x_tr,xi_tr,ai_tr);
[x_ts,xi_ts,ai_ts,t_ts] = preparets(net,{},{},testSeries);
y_ts = net(x_ts,xi_ts,ai_ts);
assignin('base','t_ts',t_ts);
assignin('base','y_ts',y_ts);
e_ts = gsubtract(t_ts,y_ts);
mat_e_ts = cell2mat(e_ts);
mat_t_ts = cell2mat(t_ts);
thePredictMape = mean(abs(mat_e_ts./mat_t_ts))*100;
assignin('base','thePredictMape',thePredictMape);