Invalid training data. The output size (5) of the last layer doesn't match the number of classes (5). How to match output size??

1 visualización (últimos 30 días)
net=vgg16();
imds = imageDatastore(fullfile('E:\','data','labels'),...
'IncludeSubfolders',true,'FileExtensions','.dcm','LabelSource','foldernames');
labelCount = countEachLabel(imds);
trainingNumFiles = 105;
rng(1) % For reproducibility
[trainData,testData] = splitEachLabel(imds,...
trainingNumFiles,'randomize');
imageSize = [512 512 1];
numClasses = 5;
encoderDepth = 9;
lgraph = segnetLayers(imageSize,numClasses,encoderDepth);
plot(lgraph)
options = trainingOptions('sgdm','InitialLearnRate',1e-3, ...
'MaxEpochs',50,'VerboseFrequency',10);
seg = trainNetwork(imds,lgraph,options)

Respuesta aceptada

nima aalizade
nima aalizade el 16 de Feb. de 2018
Editada: nima aalizade el 16 de Feb. de 2018
hello,
for using SegNet, you most have pixel labeled data with image labeler. you can use this and this example to understand better.

Más respuestas (1)

abdulkader helwan
abdulkader helwan el 25 de Dic. de 2017
Hello.. i am having the same problem here. could u please tell me how u solved it if u did so. thanks
  4 comentarios
nima aalizade
nima aalizade el 16 de Feb. de 2018
Editada: nima aalizade el 16 de Feb. de 2018
hello
for using SegNet, you most have pixel labeled data with image labeler. you can use this and this example to understand better.

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by