Parameter Optimization using Simulated Annealing
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
MByk
el 18 de Dic. de 2017
Comentada: MByk
el 18 de Dic. de 2017
I am new to optimization and trying to understand the basics, so sorry if it is a dumb question. Is it possible to tune parameters (which is a search problem) of a classifier using simulated annealing or other optimization technique, just for an example optimum value of "k" in KNN (I know there is an automatic hyperparameter optimization for KNN)?
0 comentarios
Respuesta aceptada
Alan Weiss
el 18 de Dic. de 2017
Editada: Alan Weiss
el 18 de Dic. de 2017
Sure, you can do anything you want. It might not be a good idea, but feel free.
Write an objective function that is, say, the cross-validation error rate for a particular parameter. If you have k as your parameter, and a cross-valudation partition c, then you might have
fun = @(k)kfoldLoss(fitcknn(X,y,'CVPartition',c,...
'NumNeighbors',k));
The only problem with this is that k is an integer variable, and most optimizers (including simulannealbnd) work only with continuous parameters. But you could use mixed-integer ga to optimize this.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
Más respuestas (0)
Ver también
Categorías
Más información sobre Simulated Annealing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!