what is causes NaN values in the validation accuracy and loss from traning convolutional neural network and how to avoid it?
12 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I USE this line in matlab code [trainedNet,traininfo] = trainNetwork(trainMatrix,Layers,opts);
so the information about validation and traning accuracy/loss are storage in the variable traininfo.. when i open this variable i found only the first value in iteration number 1 and also the last value but between them the value are NAN. how to avoid this problem you know i need the whole values for plotting the learning curve after that
3 comentarios
Javier Pinzón
el 29 de En. de 2018
Hello As Has,
Sorry for the late response, but, with the info provide is very difficult to find what is the root of the problem, may you provide us the next information?:
- Definition of the layers declared
- Network Options declared
At the moment that information. In that way, we can find what causes the problem.
Best Regards
Javier
Respuestas (3)
Ignacio Arganda-Carreras
el 17 de Oct. de 2018
Hello As Has,
I found the answer in the documentation of trainingInfo : "Each field is a numeric vector with one element per training iteration. Values that have not been calculated at a specific iteration are represented by NaN." So you need to check the iterations multiple of your validation frequency, those should have a value different from NaN.
0 comentarios
aybike pirol elmas
el 23 de Jun. de 2020
Merhaba,
Ben de bu problemi yaşadım.
'ValidationFrequency' 1 olarak yazdığımda, ... sorun kayboldu. Artık NAN değeri yok.
1 comentario
mohammed mahmoud
el 24 de Jun. de 2020
The main problem is the vanishing gradient. It can be solved with adjust suitable learning rate value
0 comentarios
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!