Solving system of equations

2 visualizaciones (últimos 30 días)
BeeTiaw
BeeTiaw el 1 de En. de 2018
Comentada: Jan el 25 de Abr. de 2019
Hi expert,
May I ask your suggestion on how to solve the following matrix system,
where the component of the matrix A is complex numbers with the angle (theta) runs from 0 to 2*pi, and n = 9. The known value z = x + iy = re^ia, is also complex numbers as such, r = sqrt(x^2+y^2) and a = atan (y/x)
Suppose matrix z is as shown below,
z =
0 1.0148
0.1736 0.9848
0.3420 0.9397
0.5047 0.8742
0.6748 0.8042
0.8419 0.7065
0.9919 0.5727
1.1049 0.4022
1.1757 0.2073
1.1999 0
1.1757 -0.2073
1.1049 -0.4022
0.9919 -0.5727
0.8419 -0.7065
0.6748 -0.8042
0.5047 -0.8742
0.3420 -0.9397
0.1736 -0.9848
0 -1.0148
How do you solve the system of equations above i.e. to find the coefficient of matrix alpha. I tried using a simple matrix manipulation X = inv((tran(A)*A))*tran(A)*z, but I cannot get a reasonable result.
I would expect the solution i.e. components of matrix alpa to be a real numbers.

Respuesta aceptada

Matt J
Matt J el 1 de En. de 2018
Editada: Matt J el 1 de En. de 2018
What do the two columns of z mean? Is the 2nd column supposed to be the imaginary part of z? If so,
Z=complex(z(:,1),z(:,2));
X = A\Z
  11 comentarios
Matt J
Matt J el 17 de Feb. de 2018
If the first value is 1, then this just leads to a mild modification of my initial proposal,
zc=complex(z(:,1),z(:,2));
alpha=A(:,2:end)\(zc-A(:,1))
This solves for the unknown alpha (alpha2,...,alphaN).
Jan
Jan el 25 de Abr. de 2019
@BeeTiaw: Which code do you consider as correct? What does "it seems that I have not got the right answer" mean? Which answer from which code to which input is meant here?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Logical en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by