How can I vectorize or otherwise speed up this function?

1 visualización (últimos 30 días)
emm0119
emm0119 el 17 de En. de 2018
Editada: Matt J el 18 de En. de 2018
I have a function intended to do some initial calculations on an array of test data collected during mechanical fatigue tests run under cyclic load control. It's formatted in 3 columns of time, position and load (each row is a single measurement) The datasets are huge... sometimes 20 million rows or more. Can anyone think of good ways to vectorize these FOR loops? The 2nd loop is especially inefficient, but I'm new to coding with vectors and am having trouble wrapping my head around it.
Thanks for any help or resources you can provide!
function [test,cycleposition] = fatigueimport(test)
% Get length of test and find derivative of load to count cycles
% test data is array with time, position, load in columns
cycle = zeros(length(test),1); %initiate cycle variable
cyclecount=1;
cycle(1)=1;
changeload = diff(test(:,3));
count = length(test)-1
for i=2:count
if and(changeload(i-1)>0,changeload(i)<0)
% tests for point where load changes from increasing
% (positive changeload) to decreasing (negative changeload) and
% increments cyclecount.
cyclecount=cyclecount+1
end
cycle(i)=cyclecount;
i=i+1;
end
test = [test,cycle]; % adds calculated cycle to original array
% Find position of greatest deflection for each cycle
count = max(test(:,4)) % count set to total number of cycles
cycleposition = zeros(count,1); % initiate vector to record deflection values
for i=1:count
cycleposition(i)=min(test(test(:,4)==i,2));
i=i+1;
end
end

Respuesta aceptada

Matt J
Matt J el 18 de En. de 2018
Editada: Matt J el 18 de En. de 2018
function [test,cycleposition] = fatigueimport(test)
% Get length of test and find derivative of load to count cycles
% test data is array with time, position, load in columns
changeload = diff(test(:,3));
changes=[ 1 ; changeload(1:end-1)>0 & changeload(2:end)<0 ; 0];
cycle=cumsum(changes);
test=[test,cycle];
cycleposition=accumarray(cycle, test(:,2) , [],@min);
  2 comentarios
emm0119
emm0119 el 18 de En. de 2018
Thank you so much, this is perfection! What took hours now takes mere seconds.
Matt J
Matt J el 18 de En. de 2018
Editada: Matt J el 18 de En. de 2018
You're quite welcome. Welcome to Matlab.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Data Type Identification en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by