"splitEachLabel" built-in function does not really randomize the picture distribution?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
cui,xingxing
el 26 de Feb. de 2018
Comentada: cui,xingxing
el 24 de Oct. de 2023
When I use R2017b to do deep learning classification, the imageDatasotre object is divided into training and test set,whether or not to specify the number or proportion, 'splitEachLabel' optional parameters specified as 'randomized', the training set inside the picture is not randomly arranged, and why?
as the document said: https://cn.mathworks.com/help/nnet/examples/create-simple-deep-learning-network-for-classification.html
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
'nndatasets','DigitDataset');
digitData = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
trainingNumFiles = 750;
rng(1) % For reproducibility
[trainDigitData,testDigitData] = splitEachLabel(digitData, ...
trainingNumFiles,'randomize');
When you open "trainDigitData.Files" and "trainDigitData.Labels" in a workspace, they do not disrupt the order?
0 comentarios
Respuesta aceptada
Wentao Du
el 1 de Mzo. de 2018
Here the order you see will not be completely different because the labels of "digitData" are in order (from 0 to 9). To observe the effect of "randomize" parameter, you can run
[trainDigitData,valDigitData] = splitEachLabel(digitData,trainNumFiles,'randomize');
multiple times and will find the distribution of actual image files keeps changing.
0 comentarios
Más respuestas (1)
cui,xingxing
el 1 de Mzo. de 2018
2 comentarios
debojit sharma
el 8 de Jul. de 2023
Since,it may be risky to do a standard random train/test split when having strong class imbalance.Because very small number of positive cases, we might end up with a train and test set that have very different class distributions. We may even end up with close to zero positive cases in our test set. So, is there anyfunction to do stratified sampling during train/test split that avoids disturbing class balance in our samples in MatLab @cui @Wentao Du . Like the following code in python:
from sklearn.model_selection import train_test_split
train, test = train_test_split(data, test_size = 0.3, stratify=data.buy)
Ver también
Categorías
Más información sobre 函数逼近和聚类 en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!