How can I add additional features to a pretrained AlexNet?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
MathWorks Support Team
el 25 de En. de 2018
Editada: MathWorks Support Team
el 26 de Ag. de 2021
I am classifying images using transfer learning and the pretrained AlexNet convolutional neural network.
I would like to add additional features in the fully connected layers at the end of the network.
Is it possible to add features that bypass the convolutional layers and are incorporated only at the fully connected layers?
Respuesta aceptada
MathWorks Support Team
el 26 de Ag. de 2021
Editada: MathWorks Support Team
el 26 de Ag. de 2021
You can do this by following the workflow:
1. Extract the features that is outputted by the pretrained (& transfer learning) AlexNet network right before the fully connected layer:
2. Concatenate the features from step 1 with the additional features from your image metadata.
3. Create and train a fully-connected neural network that will take in the concatenated features from step 2.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!