
How to solve and write system of differential equations?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
pml_28
el 28 de Mzo. de 2018
Editada: Abraham Boayue
el 30 de Mzo. de 2018
Hi, I am trying to solve this system through ODE45, and I tried two ways:
First:
function dxdt = rlcf(t,x)
I4 = (V - R1 * x(1)) / R4;
I3 = (V - R1 * x(1) - R2 * x(2)) / R3;
I5 = x(1) - x(2) - I4;
I6 = x(2) - I3;
dxdt(1,1) = (1/R1)*((V)-(I5/C1));
dxdt(2,1) = (1/R2)*((I5/C1)-(I6/C2));
I don't now how i write dVdt in this case... and my code enter in continuous loop.
Second:
function dxdt = rlcf(t,x)
dxdt(1,1) = (1/R1)*((V)-((x(1) - x(2) - ((V - R1 * x(1)) / R4))/C1));
dxdt(2,1) = (1/R2)*(((x(1) - x(2) - ((V - R1 * x(1)) / R4))/C1)-(((V - R1 * x(1) - R2 * x(2)) / R3)/C2));
In this case, the results in vector are 'NaN'.
How I write dVdt in this case?
0 comentarios
Respuesta aceptada
Abraham Boayue
el 29 de Mzo. de 2018
Editada: Abraham Boayue
el 29 de Mzo. de 2018
R1 = 500; R2 = 800; R3 = 1000; R4 = 200; C1 = 0.1;
C2 = 0.1; V = 180;
F = @(t,y)[y(1);
(y(1)/R1 -(y(2)-y(3)-V/R4-R1*y(2))/(R1*C1));
((y(2)-y(3)-V/R4-R1*y(2))/(R2*C1)-(y(3)-V/R3-R1*y(2)-R2*y(3))/(R2*C2))];
tspan = [1 2];
yin = [0 0 0];
[t,y]=ode45(F,tspan,yin);
plot(t,y(:,2),'linewidth',1.5,'color','b')
hold on
plot(t,y(:,3),'linewidth',1.5,'color','r')
grid;
a = title('I_1 and I_2');
legend('I_1','I_2');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('t [0 1]');
set(a,'Fontsize',14);

3 comentarios
Abraham Boayue
el 30 de Mzo. de 2018
Editada: Abraham Boayue
el 30 de Mzo. de 2018
You are welcome, you have two systems of ODE with three unknown quantities (I1, I2 and v ). It is not possible to solve for three variables given two equations. I made up the third equation to be able to get a solution. Your new function above is invalid because you haven't got that many ode in your problem. You actually have two 1st order equations which can not be further reduced. Check and see if you can obtain a third equaton involving dv/dt from the circuit diagram that you are working with. My solution is based on an assumption that dv/dt is as defined in the paper attached and may not be correct with respect to your problem. See this link on a similar problem : https://www.mathworks.com/matlabcentral/answers/391390-how-to-solve-nonlinear-coupled-dgl-second-order
Más respuestas (2)
Abraham Boayue
el 28 de Mzo. de 2018
Editada: Abraham Boayue
el 28 de Mzo. de 2018
ÌCheck your function dxdt, it has two inputs but uses othe variables that aren't defined. Some of these are V, R1, R2. t is an input but never used. Your use of I1 to I6 is quite good. Here is my recommendation
function [dx1 dx2] = rlcf(x1,x2, R1, R2, R3, R4, V)
Abraham Boayue
el 28 de Mzo. de 2018
Editada: Abraham Boayue
el 28 de Mzo. de 2018
Because the differential equation in line 1 is coupled, we will have to find a way to separate dv/dt from dI/dt.
0 comentarios
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!