Equation: X”-6x’+13x = t+3sin(t) Initial Value: x(0)=1 t є [0,1] Method: Runge-Kutta II Step Sizes: h=0.1 , h=0.03

1 visualización (últimos 30 días)
I want to solve it by the Matlab only. but facing the Problem . Can someone Please help me out?
  3 comentarios
Tariq Malik
Tariq Malik el 30 de Mzo. de 2018
Editada: James Tursa el 30 de Mzo. de 2018
This is the code that I am using.
intmin=0;
intmax=1;
numnodes=5;
f=@(t,x) t+3*(sin(t));
inival=1;
h=(intmax-intmin)/(numnodes-1);
t=zeros(1,numnodes);
x=zeros(1,numnodes);
X=zeros(1,numnodes);
t(1)=intmin;
x(1)=inival;
X(1)=inival;
for i=2:numnodes;
t(i)=t(i-1)+h;
k1=f(t(i-1),x(i-1));
k2=f(t(i-1)+h/2,x(i-1)+(h/2)*k1);
x(i)= x(i-1)+h*k2;
X(i)=X(i-1)+h*f(t(i-1),X(i-1));
end
figure
plot(t,x,'.-',t,X,'-*')
hold on
syms t x(t) sym(f)
eqn=diff(x,t)==f(t,x(t));
cond1=x(intmin)==inival;
odesol=dsolve(eqn,cond1);
odesolfun=@(t) eval(odesol);
tt=linspace(intmin,intmax,100*(ceil(intmax-intmin)));
xx=odesolfun(tt);
plot(tt,xx,'r')
hold off
Tariq Malik
Tariq Malik el 30 de Mzo. de 2018
Am I making the Problem in regarding to typing the Equation?

Iniciar sesión para comentar.

Respuesta aceptada

Abraham Boayue
Abraham Boayue el 31 de Mzo. de 2018
Editada: Abraham Boayue el 31 de Mzo. de 2018
The first thing you need to do is to write the ode as two first order equations and use the code below. You will be required to supply two initial conditions for the 1s order equations. Use the one that you are given plus another of your choice.
function [t,x,y,N] = Runge2_2eqs(f1,f2,to,tfinal,xo,yo,h)
% This function implements the Rk2 method.
t = to;
N = ceil((tfinal-to)/h);
x = zeros(1,N);
y = zeros(1,N) ;
x(1) = xo;
y(1) = yo;
for i = 1:N
t(i+1) = t(i)+h;
Sx1 = f1(t(i),x(i),y(i));
Sy1 = f2(t(i),x(i),y(i));
Sx2 = f1(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
Sy2 = f2(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
x(i+1) = x(i) + h/2*(Sx1+Sx2);
y(i+1) = y(i) + h/2*(Sy1+Sy2);
end
end
This is the mfile.
xo = 1;
yo = 0;
h = [.1 0.03];
to = 0;
tfinal = 20;
M = ceil((tfinal-to)/h(2));
dx1 = @(t,x1,x2) x2;
dx2 = @(t,x1,x2) 6*x2 -13*x1 + t + 3*sin(t);
% When you reduce the equation to two first order, x will be the solution
% of the ode, i.e x'' and y is its derivative, x'.
for i = 1: length(h)
if (i== 1) % This for the case when h = 0.1
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(i));
y1 = x;
y2 = y;
else % and for the case when h = 0.03
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(1));
x3 = x;
x4 = y;
end
end
t1 = t(1):(t(end)-t(1))/(M-1):t(end);
figure(1);
subplot(121)
plot(t1,y1, '-o')
hold on
plot(t1,y2,'-o')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h= 0.1')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
subplot(122)
plot(t,x3,'linewidth',2,'color','b')
hold on
plot(t,x4,'linewidth',2,'color','r')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h = 0.03')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
% Using ode 45 just to prove that the solution with RK2 is correct.
F = @(t,y) [ y(2); (6*y(2) -13*y(1) + t + 3*sin(t)) ];
t0 = 0;
tf = 20;
delta = (tf-t0)/(201-1);
tspan = t0:delta:tf;
ic = [1 0];
[t,y] = ode45(F, tspan, ic);
figure
plot(t,y(:,1),'-o')
hold on
plot(t,y(:,2),'-o')
a = title('Using ode45');
legend('x','x_{prime}');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('t [0 20]');
set(a,'Fontsize',14);
xlim([t0 tf])
grid
grid minor;
  1 comentario
Tariq Malik
Tariq Malik el 7 de Abr. de 2018
Editada: Walter Roberson el 8 de Abr. de 2018
intmin=0;
intmax=1;
inival1=0;
inival2=0;
numnodes = 10;
t(1) = intmin;
x1(1)= inival1;
x2(1)= inival2;
t =zeros(1,numnodes);
x1=zeros(1,numnodes);
x2=zeros(1,numnodes);
h=(intmax-intmin)/(numnodes-1);
f1 = @(t,x1,x2) x2;
f2 = @(t,x1,x2) 6*x2-13*x1+t+3*sin(t);
numnodes1=300;
a=zeros(1,numnodes1);
b1=zeros(1,numnodes1);
b2=zeros(1,numnodes1);
a(1)=intmin;
b1(1)=inival1;
b2(1)=inival2;
g=(intmax-intmin)/(numnodes1-1);
F1 = @(a,b1,b2) b2;
F2 = @(a,b1,b2) 6*b2-13*b1+a+3*sin(a);
for i = 2:numnodes
t(i) = t(i-1)+h;
k1 = f2(t(i-1),x1(i-1),x2(i-1));
k2 = f2(t(i-1)+h/2,x1(i-1)+(h/2)*k1,x2(i-1)+(h/2)*k1);
k3 = f2(t(i-1)+h/2, x1(i-1)+(h/2)*k2,x2(i-1)+(h/2)*k2);
x1(i) = x1(i-1)+(h/6)*(k1+4*k2+k3);
x2(i) = x2(i-1)+(h/6)*(k1+4*k2+k3);
end
for i = 2:numnodes1
a(i) = a(i-1)+g;
k1 = F2(a(i-1),b1(i-1),b2(i-1));
k2 = F2(a(i-1)+g/2,b1(i-1)+(g/2)*k1,b2(i-1)+(g/2)*k1);
k3 = F2(a(i-1)+g/2, b1(i-1)+(g/2)*k2,b2(i-1)+(g/2)*k2);
b1(i) = b1(i-1)+(g/6)*(k1+4*k2+k3);
b2(i) = b2(i-1)+(g/6)*(k1+4*k2+k3);
end
figure
plot(t,x1,'.-',t,x2,'-*')
hold on
syms t x(t)
sym(x)
eqn=diff(x,t,2) == diff(x,t)-13*x+t+3*sin(t);
cond1==1;
cond2==0;
odesol=dsolve(eqn,cond1,cond2);
odesolfun=@(t) eval(odesol);
tt=linspace(intmin,intmax,100*(ceil(intmax-intmin)));
xx=odesolfun(tt);
legend("Runge-Kutta 2", "0.1", "Exact");
plot(tt,xx,'r')
hold off

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Programming en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by