eig: different base

3 visualizaciones (últimos 30 días)
Uwe Brauer
Uwe Brauer el 23 de Abr. de 2018
Respondida: Uwe Brauer el 23 de Abr. de 2018
Please look at the following example:
clear all
A= ([1 1 1; 1 1 1; 1 1 1])
% the eigenvalues of that matrix are l1=0 (alg mult=2) l2=3 (alg mult=1)
% the following matrix contains eigen vectors (not the same base as matlab uses)
V2=[-1 -1 1;2 -1 1; -1 2 1]
% Check
Z=A*V2(:,1) % OK
Z=A*V2(:,2) % OK
Z=A*V2(:,3) % OK
so far so good but matlab does it differently
[V,D]=eig(A)
V
V = [ -1, -1, 1; 1, 0, 1; 0, 1, 1]
is there any way to force Matlab to chose a different base?
regards
Uwe Brauer
  2 comentarios
Torsten
Torsten el 23 de Abr. de 2018
If you knew a basis in advance, you didn't have to use "eig".
Best wishes
Torsten.
John D'Errico
John D'Errico el 23 de Abr. de 2018
MATLAB does not use any explicit basis for the eigenvectors. If there are eigenvalues of multiplicity>1, then the eigenvectors are not unique, and MATLAB will choose them as it wants. You cannot control that. And as Torsten says, if you know what they are, then why use eig in the first place?

Iniciar sesión para comentar.

Respuestas (1)

Uwe Brauer
Uwe Brauer el 23 de Abr. de 2018
thanks for the clarification.
my reason was, basically, curiosity, nothing else.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by