Custom regression layer in Deep Learning Toolbox

10 visualizaciones (últimos 30 días)
Chul Min Yeum
Chul Min Yeum el 2 de Mayo de 2018
Comentada: Chul Min Yeum el 22 de Mayo de 2018
Hi.
I have a quick question about "Custom Regression Output Layer."_ https://www.mathworks.com/help/nnet/ug/define-custom-regression-output-layer.html
My goal is similar to this: https://www.mathworks.com/help/nnet/examples/train-a-convolutional-neural-network-for-regression.html
My understanding is that, in the first step, a batch of images goes through the network and compute the loss by learning a function of the forwardloss. However, I realized that MATLAB runs a function of the backwardloss first.
Could you explain why the backwardloss runs first?
Chulmin
  2 comentarios
NM
NM el 18 de Mayo de 2018
Hi Chulmin, I am using the same example to forecast electricity demand. However, I couldn't translate the example to make it usable with my data as my data doesn't contain images. Can you please help me out? My data: Xtrain (9x800) double type, Ytrain (1x800)
Chul Min Yeum
Chul Min Yeum el 22 de Mayo de 2018
Could you more elaborate your data and purpose? Cnn is designed for image data. You can simply use a neural network toolbox for your problem.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by