Help solving a system of differential equations
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Tejas Adsul
el 15 de Mayo de 2018
Comentada: Tejas Adsul
el 16 de Mayo de 2018
I have the following system of differential equations, and I am not able to understand the best way to go about them. I tried using a couple of functions like dsolve, ode45, etc., but most of them give errors that I am not able to understand.
x(1)=0.3; x(3)=0.9; y(1)=0.4; y(3)=0.8;
A=10; p=10;
syms X1 X2;
num = ((x(3)-X1)-(X1-x(1)))*X1 + ((y(3)-X2)-(X2-y(1)))*X2;
den = sqrt((x(3)-X1)-(X1-x(1))^2 + (y(3)-X2)-(X2-y(1))^2);
Em = -A*(X1-x(1))*(x(3)-X1) - A*(X2-y(1))*(y(3)-X2) + p*num/den;
dXdt = [-diff(Em,X1); -diff(Em,X2)];
I would like to get X1 and X2 as a function of time. If I define syms X1(t) and X2(t), I get the error 'All arguments, except for the first one, must not be symbolic functions.' The above code, when run, gives me expressions in terms of X1 and X2. I need solutions of X1 and X2 in terms of t, where dX1dt = -diff(Em,X1), dX2dt = -diff(Em,X2).
Any help is appreciated. Thank you!
2 comentarios
Stephan
el 15 de Mayo de 2018
Hi,
is it correct, that x and y are depending on t --> so: x(t) and y(t)?
Best regards
Stephan
Respuesta aceptada
Stephan
el 15 de Mayo de 2018
Editada: Stephan
el 15 de Mayo de 2018
Hi,
does this work for your purpose?
x1=0.3;
x3=0.9;
y1=0.4;
y3=0.8;
A=10;
p=10;
syms X_1 X_2 X1(t) X2(t);
num = ((x3-X_1)-(X_1-x1))*X_1 + ((y3-X_2)-(X_2-y1))*X_2;
den = sqrt((x3-X_1)-(X_1-x1)^2 + (y3-X_2)-(X_2-y1)^2);
Em = -A*(X_1-x1)*(x3-X_1) - A*(X_2-y1)*(y3-X_2) + p*num/den;
dEm_dX_1 = diff(Em,X_1);
dEm_dX_2 = diff(Em,X_2);
dEm_dX_1 = (subs(dEm_dX_1, [X_1 X_2], [X1 X2]));
dEm_dX_2 = (subs(dEm_dX_2, [X_1 X_2], [X1 X2]));
ode1 = diff(X1,t) == -dEm_dX_1;
ode2 = diff(X2,t) == -dEm_dX_2;
ode = matlabFunction([ode1; ode2])
ode is a function handle:
ode =
function_handle with value:
@(t)[diff(X1(t),t)==X1(t).*-2.0e1+(X1(t).*4.0e1-1.2e1).*1.0./sqrt(-X1(t)-X2(t)-(X2(t)-2.0./5.0).^2-(X1(t)-3.0./1.0e1).^2+1.7e1./1.0e1)+(X1(t).*2.0+2.0./5.0).*(X1(t).*(X1(t).*2.0-6.0./5.0).*1.0e1+X2(t).*(X2(t).*2.0-6.0./5.0).*1.0e1).*1.0./(-X1(t)-X2(t)-(X2(t)-2.0./5.0).^2-(X1(t)-3.0./1.0e1).^2+1.7e1./1.0e1).^(3.0./2.0).*(1.0./2.0)+1.2e1;diff(X2(t),t)==X2(t).*-2.0e1+(X2(t).*4.0e1-1.2e1).*1.0./sqrt(-X1(t)-X2(t)-(X2(t)-2.0./5.0).^2-(X1(t)-3.0./1.0e1).^2+1.7e1./1.0e1)+(X2(t).*2.0+1.0./5.0).*(X1(t).*(X1(t).*2.0-6.0./5.0).*1.0e1+X2(t).*(X2(t).*2.0-6.0./5.0).*1.0e1).*1.0./(-X1(t)-X2(t)-(X2(t)-2.0./5.0).^2-(X1(t)-3.0./1.0e1).^2+1.7e1./1.0e1).^(3.0./2.0).*(1.0./2.0)+1.2e1]
depending on time, which should be able to solve like you wanted to do.
Running it as a live script gives:
That's what you wanted to achieve?
Best regards
Stephan
5 comentarios
Stephan
el 15 de Mayo de 2018
Please note that i have assumed initial conditions:
X1(0)=0
X2(0)=0
You have to check this...i dont have an idea if this is correct.
Best regards
Stephan
Más respuestas (1)
Stephan
el 15 de Mayo de 2018
Editada: Stephan
el 15 de Mayo de 2018
Hi,
did i understand right:
x1=0.3;
x3=0.9;
y1=0.4;
y3=0.8;
A=10;
p=10;
syms X1 X2;
num = ((x3-X1)-(X1-x1))*X1 + ((y3-X2)-(X2-y1))*X2;
den = sqrt((x3-X1)-(X1-x1)^2 + (y3-X2)-(X2-y1)^2);
Em = -A*(X1-x1)*(x3-X1) - A*(X2-y1)*(y3-X2) + p*num/den;
dEm_dX1 = diff(Em,X1)
dEm_dX2 = diff(Em,X2)
dX1dt = -dEm_dX1
dX2dt = -dEm_dX2
This is what you wanted to do?
gives:
dX1dt =
(40*X1 - 12)/(17/10 - X2 - (X2 - 2/5)^2 - (X1 - 3/10)^2 - X1)^(1/2) - 20*X1 + ((2*X1 + 2/5)*(10*X1*(2*X1 - 6/5) + 10*X2*(2*X2 - 6/5)))/(2*(17/10 - X2 - (X2 - 2/5)^2 - (X1 - 3/10)^2 - X1)^(3/2)) + 12
dX2dt =
(40*X2 - 12)/(17/10 - X2 - (X2 - 2/5)^2 - (X1 - 3/10)^2 - X1)^(1/2) - 20*X2 + ((2*X2 + 1/5)*(10*X1*(2*X1 - 6/5) + 10*X2*(2*X2 - 6/5)))/(2*(17/10 - X2 - (X2 - 2/5)^2 - (X1 - 3/10)^2 - X1)^(3/2)) + 12
Can this be correct?
Best regards
Stephan
Ver también
Categorías
Más información sobre Equation Solving en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!