How to solve spring-mass ODE in rotating frame (without symbolic toolbox)
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Tyler
el 31 de Mayo de 2018
Comentada: Tyler
el 31 de Mayo de 2018
Hi,
I am trying to solve the ODE of a spring & mass in the rotating frame.
The equations of motion are as follows:
mx'' = -kx + 2my'w + m(x + e)w^2
my'' = -ky - 2mx'w + myw^2
here the "eccentric mass" is aligned with the x axis.
Given a set of initial conditions - what tool can i use in MATLAB to solve for x(t), y(t)?
Any help would be greatly appreciated!!!
Thanks!
0 comentarios
Respuesta aceptada
Steven Lord
el 31 de Mayo de 2018
Start off trying the ode45 function. Use the "Solve Nonstiff Equation" and "ODE with Time-Dependent Terms" examples on that documentation page as a model for writing your own ODE function and pass a function handle to that ODE function into ode45 as the first input argument.
If ode45 doesn't work or takes too long, try a stiffer solver from the table in the Basic Solver Selection section on this documentation page.
3 comentarios
James Tursa
el 31 de Mayo de 2018
It looks like you are missing a w in your odefun for the 2my'w and 2mx'w terms. Also the sign of one of the terms looks incorrect. Try this:
dydt(2) = -(k/m)*y(1) + 2*y(4)*w + (y(1)+e)*w^2;
:
dydt(4) = -(k/m)*y(3) - 2*y(2)*w + y(3)*w^2;
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!