How to correct the error - ClassificationSVM
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
vokoyo
el 16 de Jun. de 2018
Comentada: Walter Roberson
el 25 de Abr. de 2023
My Matlab code -
clear
load fisheriris
% Only use the third and fourth features
x=meas(:,3:4);
gscatter(x(:,1),x(:,2),species);
% Only use the last two categories
x=meas(51:end,3:4);
group=species(51:end,1);
gscatter(x(:,1),x(:,2),group);
% Linear SVM
svmStruct = fitcsvm(x,group,'showplot',true);
% Kernel SVM
svmStruct = fitcsvm(xdata,group,'showplot',true,'kernel_function','rbf');
% Select different sigma
svmStruct = fitcsvm(xdata,group,'showplot',true,'kernel_function','rbf','rbf_sigma',0.5);
But here I get the error message such as below -
Error in fitcsvm (line 316)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in Untitled (line 11)
svmStruct = fitcsvm(x,group,'showplot',true);
0 comentarios
Respuesta aceptada
Walter Roberson
el 16 de Jun. de 2018
Editada: Walter Roberson
el 16 de Jun. de 2018
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true))
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction','rbf','KernelScale',0.5)
1 comentario
Walter Roberson
el 17 de Jun. de 2018
ntry = 10;
kftypes = {'gaussian', 'rbf', 'polynomial'};
nkf = length(kftypes);
svmStructs = cell(ntry,1);
for idx = 1 : ntry
kfidx = randi(nkf);
kftype = kftypes{kfidx};
if ismember(kfidx, [1, 2])
ks = exp(randn());
opts = {'KernelScale', ks};
else
q = randi(20);
opts = {'PolynomialOrder', q}
end
svmStructs{idx} = fitcsvm(x, group, 'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction', kftype, opts{:});
disp(kftype)
celldisp(opts);
pause(2);
end
Más respuestas (5)
vokoyo
el 17 de Jun. de 2018
Editada: vokoyo
el 17 de Jun. de 2018
1 comentario
Walter Roberson
el 17 de Jun. de 2018
Try different settings for the KernelFunction https://www.mathworks.com/help/stats/fitcsvm.html#bt9w6j6_sep_shared-KernelFunction and for the KernelScale and see what the effects are.
vokoyo
el 18 de Jun. de 2018
Editada: vokoyo
el 18 de Jun. de 2018
6 comentarios
Walter Roberson
el 18 de Jun. de 2018
It sounds as if you are calling svm_3d_matlab_vis without passing in any parameters.
Don Mathis
el 18 de Jun. de 2018
FITCSVM does not have an argument named 'showplot'. When I run your original code in R2018a I get this:
Error using classreg.learning.FitTemplate/fillIfNeeded (line 612)
showplot is not a valid parameter name.
Error in classreg.learning.FitTemplate.make (line 124)
temp = fillIfNeeded(temp,type);
Error in ClassificationSVM.template (line 235)
temp = classreg.learning.FitTemplate.make('SVM','type','classification',varargin{:});
Error in ClassificationSVM.fit (line 239)
temp = ClassificationSVM.template(varargin{:});
Error in fitcsvm (line 316)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in Untitled3 (line 11)
svmStruct = fitcsvm(x,group,'showplot',true);
Don Mathis
el 25 de Abr. de 2023
Editada: Don Mathis
el 25 de Abr. de 2023
svmtrain() was replaced by fitcsvm(), and fitcsvm does not have a 'showplot' argument. Making a 2D plot of data points and support vectors in not built-in to fitcsvm, nor the object that it returns, ClassificationSVM.
If you have a 2D input space and you want to plot points and support vectors, you can see an example of how to do that here: https://www.mathworks.com/help/stats/classificationsvm.html#bt7go4d
0 comentarios
Ver también
Categorías
Más información sobre Classification Trees en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!