ifft output is complex?

33 visualizaciones (últimos 30 días)
ben howey
ben howey el 31 de Ag. de 2018
Editada: Matt J el 31 de Ag. de 2018
I have a time series (x). I have taken the fft of the time series (X). I want to shift the entire series, or in the future only certain frequency components, by phase shift (theta). I have changed the complex numbers of X to alter the angle whilst conserving the abs(X). I then ifft the output (X2) and I get a complex output and im not sure why?
Thanks
if true
for m=2:length(X)
n=X(m);
r=real(n);
im=imag(n);
a=angle(n);
a2=a+pi/2;
r2=(r*cos(a2))/cos(a);
im2=tan(a2)*r2;
z=complex(r2,im2);
X2(m,1)=z;
end
output=ifft(X2);

Respuestas (2)

Dimitris Kalogiros
Dimitris Kalogiros el 31 de Ag. de 2018
After the manipulations of fft values X , If abs(X) exhibits even symmetry and angle(X) odd symmetry, then ifft should give back a real value time sequence. Otherwise, ifft results to a complex time series.

Matt J
Matt J el 31 de Ag. de 2018
Editada: Matt J el 31 de Ag. de 2018
Shifting the angle by a constant amount for every frequency component will not translate the signal. The translation t0 has to be linearly weighted by frequency.
Also, it is much easier to implement what you have done just by doing,
output=ifft( X.*exp(-j*2*pi*f*t0) )
  6 comentarios
ben howey
ben howey el 31 de Ag. de 2018
*sorry z=sin(wt+pi/2) = sin(2*pi*0.3+pi/2) , where w is omega frequency in rad/s
Matt J
Matt J el 31 de Ag. de 2018
Editada: Matt J el 31 de Ag. de 2018
That is the same as
z=sin(2*pi*0.3*(t+1/1.2))
So yes, it is possible. You would add +/- 1/1.2 to the phase angle of the spectral components at +/- 0.3 Hz.

Iniciar sesión para comentar.

Productos


Versión

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by