Multi variable Simulated Annealing with different bounds
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Spyros Polychronopoulos
el 12 de Sept. de 2018
Editada: Spyros Polychronopoulos
el 21 de Sept. de 2018
Hi there, I have this function that has two variables x and y
fun = @(x,y) x+y-5;
I would like to find the global minimum of this function using SA optimiser. Now the problem that I have here is that I want to use different boundary conditions for x and y like so
x0 = rand;
LBx = 0; % LBx - lower bound for x
UBx= 10; % UBx - upper bound for x
y0 = rand;
LBy = -2; % LB - lower bound for x
UBy= 3; % UB - upper bound for y
The line below is obviously not working but I am posting it as a reference to explain what I am trying to do
[x,y,fval]=simulannealbnd(fun,x0,LBx,UBx,y0,LBy,UBy); %simulated annealing
Thank you very much in advance for your help
0 comentarios
Respuesta aceptada
Alan Weiss
el 13 de Sept. de 2018
Global Optimization Toolbox solvers, like Optimization Toolbox™ solvers, require you to put all your variables into one vector. The same with the bounds. See Compute Objective Functions and Bound Constraints.
Alan Weiss
MATLAB mathematical toolbox documentation
Más respuestas (1)
Spyros Polychronopoulos
el 21 de Sept. de 2018
Editada: Spyros Polychronopoulos
el 21 de Sept. de 2018
0 comentarios
Ver también
Categorías
Más información sobre Simulated Annealing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!