How I can code this Nonuniform Series?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
mohamad hoseini
el 10 de Oct. de 2018
Editada: mohamad hoseini
el 12 de Oct. de 2018
Hi all,
I have a problem in coding of series below:
from n=0 & P0(x)=1. I used handle function in a for loop but I couldn't to save the handle function at the end of each iteration. I appreciate you if you could help me on this problem.
Thanks
4 comentarios
Torsten
el 11 de Oct. de 2018
Do these recursively defined polynomials have a name ?
Then maybe googling this name together with "matlab" will give you hints on how to efficiently calculate them.
Respuesta aceptada
Dimitris Kalogiros
el 11 de Oct. de 2018
Editada: Dimitris Kalogiros
el 11 de Oct. de 2018
Provided that you can use symbolic math toolbox, I suggest the following:
close all; clc; clearvars;
syms n x Pn(x)
% first N polynomials
N=5;
f{N}=0;
% definition for n=0
Pn(x)=1;
f{1}=Pn(x);
% calculation from n=1 up to n=N
for n=1:N
Pn(x)=x^n;
for k=1:n
Pn(x)=Pn(x)- ( int((x^n)*f{k},x,-1,1) / int(f{k}^2,x,-1,1) )* f{k} ;
end
%store next polynomial
f{n+1}=Pn(x);
end
%display all calculated polynomials
for k=0:N
fprintf(' for n = %d ', k);
disp(f{k+1})
end
If you run it , lets say , to calculate P1(x), P2(x),...,P5(x) , you'll get something like this:
The "tip" here is to use the cell array f{}, in order to store all Pn(x) polynomials.
2 comentarios
Walter Roberson
el 11 de Oct. de 2018
Editada: Walter Roberson
el 11 de Oct. de 2018
Alternatively you could phrase it as P{n+1}(x). Which is to say that you can use a cell array of function handles to solve the coding, without using symbolic toolbox.
This is a situation where I would want to analyze to see whether memoize() is appropriate.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!