Is there any code or command for doubling a point ?

11 visualizaciones (últimos 30 días)
Maria Hameed
Maria Hameed el 23 de Oct. de 2018
Comentada: Ammy el 21 de Feb. de 2022
I have an elliptic curve y*2=x*3+148x+225 mod 5003 I took G=(1355,2421) as the shared key I want to find points as (G,2G,3G,4G,......5003G)
  2 comentarios
madhan ravi
madhan ravi el 23 de Oct. de 2018
can you give a clear example?
Maria Hameed
Maria Hameed el 23 de Oct. de 2018
input:(G,2G,3G,4G,....5003G) output:[(1355,2421),(533,2804),(4896,1633),(2822,532),.....,(1329,2633)]

Iniciar sesión para comentar.

Respuesta aceptada

Bruno Luong
Bruno Luong el 24 de Oct. de 2018
% EL parameters
a = 148
b = 225
% Group Z/pZ parameter
p = 5003
% Point
G = [1355,2421];
% Compute G2 = 2*G
x = G(1);
y = G(2);
d = mod(2*y,p);
[~,invd,~] = gcd(d,p);
n = mod(3*x*x + a,p);
lambda = mod(n*invd,p);
x2 = mod(lambda*lambda - 2*x,p);
y2 = mod(lambda*(x-x2)-y,p);
G2 = [x2 y2]
G2 =
533 2804
  6 comentarios
Maria Hameed
Maria Hameed el 26 de Oct. de 2018
% EL parameters a = 148 b = 225 % Group Z/pZ parameter p = 5003 % Point for i=1:256 Gi = [1355,2421]; % Compute G(i+1) = 2*Gi xi = Gi(1); yi = Gi(2); d = mod(2*yi,p); [~,invd,~] = gcd(d,p); n = mod(3*xi*xi + a,p); lambda = mod(n*invd,p); x2 = mod(lambda*lambda - 2*xi,p); y2 = mod(lambda*(xi-x(i+1))-y,p); G(i+1) = [x(i+1) y(i+1)]
% Compute G(i+2) = G(i+1)+Gi
d1 = mod((x(i+1)-xi),p); [~,invd,~] = gcd(d1,p); n1 = mod((y(i+1)-yi),p); lambda = mod(n1*invd,p); x(i+2) = mod(lambda*lambda - x-x(i+1),p); y(i+2) = mod(lambda*(x-x(i+2))-y,p); G(i+2) = [x(i+2) y(i+2)] end for sir how can I combine theses codes for point doubling ?
Bruno Luong
Bruno Luong el 26 de Oct. de 2018
Your code is incomplete, isn't it? I post the answer below.

Iniciar sesión para comentar.

Más respuestas (4)

Bruno Luong
Bruno Luong el 26 de Oct. de 2018
EL = struct('a', 148, 'b', 225, 'p', 5003);
% Point
G = [1355,2421];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
invd = itab(mod(d,p)); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
yr = lambda*(xp-xr) - yp;
R = mod([xr, yr],p);
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
  11 comentarios
Bruno Luong
Bruno Luong el 21 de Feb. de 2022
As stated in my code, for illustration only, there is no careful check for overflow of calculation. This code is more robust but still not bulet-proof
EL = struct('a', 0, 'b', 2, 'p', 957221);
% Point
G = [762404,61090];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
d = mod(d,p);
n = mod(n,p);
invd = itab(d); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
xr = mod(xr,p);
yr = lambda*(xp-xr) - yp;
yr = mod(yr,p);
R = [xr, yr];
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
Ammy
Ammy el 21 de Feb. de 2022
Thank you very much@Bruno Luong.

Iniciar sesión para comentar.


KSSV
KSSV el 23 de Oct. de 2018
G=[1355,2421] ;
P = 1:1:5003 ;
Q = P'.*G ;
  8 comentarios
Walter Roberson
Walter Roberson el 24 de Oct. de 2018
Should the definition of s really divide by 2 and multiply the results by y, or should it be dividing by (2*y)?
Maria Hameed
Maria Hameed el 24 de Oct. de 2018
it should divide (2*y) and this is actually as s=[(3*x^2+a)modp]*[(2*y)^-1 mod p] and inverse of (2*y) should be found by extended euclidean algo

Iniciar sesión para comentar.


madhan ravi
madhan ravi el 23 de Oct. de 2018
double(points) %like this?
  1 comentario
Maria Hameed
Maria Hameed el 24 de Oct. de 2018
yup note that this point doubling is of elliptic curve not simple point multiplication

Iniciar sesión para comentar.


Bruno Luong
Bruno Luong el 23 de Oct. de 2018
I reiterate my answer previously, you need first to program the "+" operator for EL, then doubling point 2*Q is simply Q "+" Q.
Formula for addition in EC group in the section Elliptic Curves over Zp of this document

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by