- Have a read in the documentation of bvp4c
- Try to implement your model with a single fixed value for r and get a valid solution
- Once you have this, use a for loop to vary r like needed for your purposes and save all the results in a Matrix in different columns or rows
- Plot the results by using the saved values
how to write matlab bvp4c code for moving boundary surface problem?
15 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Anil Gautam
el 6 de Nov. de 2018
hello, I am new in the bvp4c method of Matlab. I want to find multiple graphs for different value of 'r' for the following problem. Equation is f''' +ff''=0 Boundary condition is f(0)=0, f'(0)=1-r, f'(infnty)=r
0 comentarios
Respuesta aceptada
Stephan
el 6 de Nov. de 2018
Editada: Stephan
el 6 de Nov. de 2018
Hi,
i recommend to start simple and work step by step:
Problems by doing this? --> Come back and ask a specific question including your code so far.
Best regards
Stephan
2 comentarios
Más respuestas (1)
Torsten
el 7 de Nov. de 2018
Editada: Torsten
el 7 de Nov. de 2018
function main
r=[0 0.02 0.04]
for i=1:numel(r)
r_actual = r(i);
solinit = bvpinit(linspace(0,10,10000),[0 1-r_actual 0]);
options = bvpset('stats','on');
sol{i} = bvp4c(@equation,@(y0,yinf)bvpbc(y0,yinf,r_actual),solinit,options);
end
for i=1:numel(r)
eta = sol{i}.x;
u = sol{i}.y;
plot(eta,u(3,:));
hold on;
end
end
% --------------------------------------------------------------------------
function dy=equation(~,y)
%dy=zeros(4,1);
dy=[y(2);
y(3);
-y(1)*y(3);
%---------------------------------------------------------------------
];
end
function res = bvpbc(y0,yinf,r_actual)
res = [y0(1)
y0(2)-1+ r_actual
yinf(2)- r_actual
];
end
3 comentarios
Torsten
el 7 de Nov. de 2018
Editada: Torsten
el 7 de Nov. de 2018
Try this code - it uses the solution of the last step as initial guess for the next:
function main
global ix
r=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];
r_actual = r(1);
ir=1;
solinit = bvpinit(linspace(0,10,1000),@(x)guess(x,ir,[0 1-r_actual r_actual]));
options = bvpset('stats','on');
ix = 0;
sol{1} = bvp4c(@equation,@(y0,yinf)bvpbc(y0,yinf,r_actual),solinit,options);
for ir=2:numel(r)
r_actual = r(ir);
solinit = bvpinit(sol{ir-1}.x,@(x)guess(x,ir,sol{ir-1}.y));
options = bvpset('stats','on');
ix = 0;
sol{ir} = bvp4c(@equation,@(y0,yinf)bvpbc(y0,yinf,r_actual),solinit,options);
end
for ir=1:numel(r)
eta = sol{ir}.x;
u = sol{ir}.y;
plot(eta,u(3,:));
hold on;
end
end
% --------------------------------------------------------------------------
function dy=equation(~,y)
%dy=zeros(4,1);
dy=[y(2);
y(3);
-y(1)*y(3);
%---------------------------------------------------------------------
];
end
function res = bvpbc(y0,yinf,r_actual)
res = [y0(1)
y0(2)-1+ r_actual
yinf(2)- r_actual
];
end
function yini=guess(x,ir,sol)
global ix
ix = ix + 1;
if ir==1
yini(1)=sol(1);
yini(2)=sol(2);
yini(3)=sol(3);
else
yini(1)=sol(1,ix);
yini(2)=sol(2,ix);
yini(3)=sol(3,ix);
end
end
Ver también
Categorías
Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!