allocate values avoiding loop
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Rahel Braun
el 8 de Nov. de 2018
Comentada: Cris LaPierre
el 12 de Nov. de 2018
I have the following matrix [t k p]
1.0000 1.0000 -1.1471
1.0000 2.0000 -1.0689
2.0000 1.0000 -0.8095
2.0000 2.0000 -2.9443
3.0000 1.0000 1.4384
3.0000 2.0000 0.3252
and I want an additional column with the mean of p for every t, hence
1.0000 1.0000 -1.1471 -1.1080
1.0000 2.0000 -1.0689 -1.1080
2.0000 1.0000 -0.8095 -1.8769
2.0000 2.0000 -2.9443 -1.8769
3.0000 1.0000 1.4384 0.8818
3.0000 2.0000 0.3252 0.8818
I can do it with the following code
if true
%Calulate the mean
A=[t p_tk];
p_t= accumarray(A(:,[1]), A(:,2), [], @nanmean, NaN);
% allocate it to long form
p_t_long= NaN(size(t));
for d = 1:max(t)
ind= t ==d;
p_t_long(ind)= p_t(d);
end
end
However, I want to avoid loops since I have a big dataset. Can anybody help?
0 comentarios
Respuesta aceptada
Stephen23
el 8 de Nov. de 2018
Editada: Stephen23
el 8 de Nov. de 2018
Some indexing using the first column does what you want, more efficiently than a loop or unique:
>> M = [1,1,-1.1471;1,2,-1.0689;2,1,-0.8095;2,2,-2.9443;3,1,1.4384;3,2,0.3252]
M =
1.00000 1.00000 -1.14710
1.00000 2.00000 -1.06890
2.00000 1.00000 -0.80950
2.00000 2.00000 -2.94430
3.00000 1.00000 1.43840
3.00000 2.00000 0.32520
>> V = accumarray(M(:,1),M(:,3),[],@mean)
V =
-1.10800
-1.87690
0.88180
>> M(:,4) = V(M(:,1))
M =
1.00000 1.00000 -1.14710 -1.10800
1.00000 2.00000 -1.06890 -1.10800
2.00000 1.00000 -0.80950 -1.87690
2.00000 2.00000 -2.94430 -1.87690
3.00000 1.00000 1.43840 0.88180
3.00000 2.00000 0.32520 0.88180
3 comentarios
Stephen23
el 12 de Nov. de 2018
Editada: Stephen23
el 12 de Nov. de 2018
>> M = [1,1,1,0.1435;1,1,2,-5.3137;1,2,1,-6.7921;1,2,2,-8.5640;2,1,1,-2.3356;2,1,2,-17.0264;2,2,1,12.6423;2,2,2,8.2006;3,1,1,2.7997;3,1,2,2.6523;3,2,1,-4.9816;3,2,2,13.1869]
M =
1.00000 1.00000 1.00000 0.14350
1.00000 1.00000 2.00000 -5.31370
1.00000 2.00000 1.00000 -6.79210
1.00000 2.00000 2.00000 -8.56400
2.00000 1.00000 1.00000 -2.33560
2.00000 1.00000 2.00000 -17.02640
2.00000 2.00000 1.00000 12.64230
2.00000 2.00000 2.00000 8.20060
3.00000 1.00000 1.00000 2.79970
3.00000 1.00000 2.00000 2.65230
3.00000 2.00000 1.00000 -4.98160
3.00000 2.00000 2.00000 13.18690
>> [~,~,idx] = unique(M(:,1:end-2),'rows'); % indices of row groups.
>> V = accumarray(idx,M(:,end),[],@mean); % mean of each group.
>> M(:,5) = V(idx)
M =
1.00000 1.00000 1.00000 0.14350 -2.58510
1.00000 1.00000 2.00000 -5.31370 -2.58510
1.00000 2.00000 1.00000 -6.79210 -7.67805
1.00000 2.00000 2.00000 -8.56400 -7.67805
2.00000 1.00000 1.00000 -2.33560 -9.68100
2.00000 1.00000 2.00000 -17.02640 -9.68100
2.00000 2.00000 1.00000 12.64230 10.42145
2.00000 2.00000 2.00000 8.20060 10.42145
3.00000 1.00000 1.00000 2.79970 2.72600
3.00000 1.00000 2.00000 2.65230 2.72600
3.00000 2.00000 1.00000 -4.98160 4.10265
3.00000 2.00000 2.00000 13.18690 4.10265
Más respuestas (2)
Bruno Luong
el 8 de Nov. de 2018
A=[...
1.0000 1.0000 -1.1471
1.0000 2.0000 -1.0689
2.0000 1.0000 -0.8095
2.0000 2.0000 -2.9443
3.0000 1.0000 1.4384
3.0000 2.0000 0.3252 ]
[~,~,J] = unique(A(:,1));
p_t= accumarray(J, A(:,3), [], @(x) mean(x,'omitnan'), NaN);
[A p_t(J)]
Result
ans =
1.0000 1.0000 -1.1471 -1.1080
1.0000 2.0000 -1.0689 -1.1080
2.0000 1.0000 -0.8095 -1.8769
2.0000 2.0000 -2.9443 -1.8769
3.0000 1.0000 1.4384 0.8818
3.0000 2.0000 0.3252 0.8818
5 comentarios
Bruno Luong
el 12 de Nov. de 2018
My problem was that I didn't know how to use unique() properly with 3 groups,
Stephen already answered by just add 'ROWS' argument, to have one identification (third output) by for each 1x3 row (your "groups").
BTW, you might not noticed by using
accumarray(...,data) ./ accumarray(...,1)
is always fater than
accumarray(...,data, ..., @mean)
if speed is matter for you.
Cris LaPierre
el 8 de Nov. de 2018
grpAvg = splitapply(@mean,p,t);
pAvg = grpAvg(t);
[t k p pAvg]
2 comentarios
Cris LaPierre
el 8 de Nov. de 2018
Editada: Cris LaPierre
el 8 de Nov. de 2018
If your grouping variable is not as clean as it is in this example, you can use the findgroups function to create an index of the unique values in your grouping variable.
Cris LaPierre
el 12 de Nov. de 2018
Using your updated matrix from a comment, here is a robust way to achieve what you want using findgroups and splitapply (assuming variable t,k,l, and p exist and represent the columns of M):
M = [t k l p]
G = findgroups(t,k);
grpAvg = splitapply(@mean,p,G);
pAvg = grpAvg(G);
V = [t k l p pAvg]
The original matrix M is
M =
1.0000 1.0000 1.0000 0.1435
1.0000 1.0000 2.0000 -5.3137
1.0000 2.0000 1.0000 -6.7921
1.0000 2.0000 2.0000 -8.5640
2.0000 1.0000 1.0000 -2.3356
2.0000 1.0000 2.0000 -17.0264
2.0000 2.0000 1.0000 12.6423
2.0000 2.0000 2.0000 8.2006
3.0000 1.0000 1.0000 2.7997
3.0000 1.0000 2.0000 2.6523
3.0000 2.0000 1.0000 -4.9816
3.0000 2.0000 2.0000 13.1869
And resulting matrix V is
V =
1.0000 1.0000 1.0000 0.1435 -2.5851
1.0000 1.0000 2.0000 -5.3137 -2.5851
1.0000 2.0000 1.0000 -6.7921 -7.6780
1.0000 2.0000 2.0000 -8.5640 -7.6780
2.0000 1.0000 1.0000 -2.3356 -9.6810
2.0000 1.0000 2.0000 -17.0264 -9.6810
2.0000 2.0000 1.0000 12.6423 10.4215
2.0000 2.0000 2.0000 8.2006 10.4215
3.0000 1.0000 1.0000 2.7997 2.7260
3.0000 1.0000 2.0000 2.6523 2.7260
3.0000 2.0000 1.0000 -4.9816 4.1026
3.0000 2.0000 2.0000 13.1869 4.1026
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!