Question on implementing Danckwert's boundary condition
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have the following code, which solves for the change in concentration of a species along the length of a channel of length L . The equation is ,
$ \frac{\partial C}{\partial t} = -v\frac{\partial C}{\partial z} + D\frac{\partial^2C}{\partial z^2} - kC $
The spatial direction is discretized and the resulting form solved using ode solver.
I have used constant values of concentration at the right and left boundary of the cylindrical channel.
function Model()
Nodes = 10;
v = 10;D =50;k = 10;
%C0 contains the concentration of the species at time 0 at all the nodes
C0(1:10) = [2000;1996;1980;1973;1965;1950;1947;1938;1878;1800]';
C(1:8,1) = C0(2:9);
tspan = 1:10;
[t C] = ode15s(@(t,v) diff(t,v), tspan ,C)
function dCdot=diff(t,C)
Convection = zeros(8,1);
ConvectionB = zeros(8,1);
ConvectionB(8,1) = C0(10);%Value at the right boundary(z=L) goes here
Matrix = -1*diag(ones(1,8));
for i=1:7
Matrix(i,i+1) = 1;
end
Convection = v*(Matrix*C + ConvectionB);
%The second term on the LHS of the first equation is discretized using
%central difference and a tridiagonal matrix is formed
Diffusion = zeros(8,1);
DiffusionB = zeros(8,1);
DiffusionB(1,1) = C0(1);%Value at the left boundary(z=0) goes here
DiffucionB(8,1) = C0(10);%Value at the right boundary(z=L) goes here
Diffusion = D*(full(gallery('tridiag',8,1,-2,1))*C + DiffusionB);
Reaction = -k*C;
dCdot = Convection + Diffusion + Reaction;
end
end
I would like to implement Danckwert’s boundary condition given as follows,
At z = 0,
C (z =0) = C^{feed} + \frac{D}{v}\frac{\partial C}{\partial z}
At z = L,
\frac{\partial C}{\partial z} = 0
Could someone advise me on how the above boundary condition can be implemented in the code?
1 comentario
Ngo Ich Son
el 17 de Mzo. de 2023
You only can apply the Danckwert's BC using the boundary value problem solver (bvp4c or bvp5c).
Respuestas (0)
Ver también
Categorías
Más información sobre Boundary Conditions en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!