Finding the multiple zeros within a prescribed interval
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I wish to solve the nonlinar function:
=0
within a prescribed interval, say (0,100] say, I'm aware of using an annonymous function and using fzero or fsolve, but how do I get say multiple solutions?
0 comentarios
Respuestas (1)
Torsten
el 13 de Nov. de 2018
Editada: Torsten
el 13 de Nov. de 2018
deltax = 1e-4;
xright = 100;
n = floor(xright/pi);
fun = @(x)tan(x)-x;
for i=1:n
left = (2*i-1)*pi/2.0 + deltax;
right = (2*i+1)*pi/2.0 - deltax;
sol(i) = fzero(fun,[left right]);
end
sol
fun(sol)
7 comentarios
Matt J
el 13 de Nov. de 2018
Editada: Matt J
el 13 de Nov. de 2018
No, the strategy to find all zeros of a function in a specified interval will always depend on the behaviour of the function itself. So no general guideline can be given.
Imagine, for example, that you were instead trying to find all roots of contained in the interval [0,a]. No matter what you choose, there would always be infinite roots in the interval.
Torsten
el 14 de Nov. de 2018
@Matthew Hunt:
You know that tan(x) -x -> -Inf for x->2*(k-1)*pi/2 from the right and tan(x) - x -> +Inf for x->2*(k+1)*pi/2 from the left. So there must be a root in the interval 2*(k-1)*pi/2 : 2*(k+1)*pi/2. Plotting the function tan(x) - x you can see that there is exactly one root in this interval. This explains my code and the fact that it captures all roots in a specified interval.
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!