eigenvalues and eigenvector manual calculation

5 visualizaciones (últimos 30 días)
muhammad iqbal habibie
muhammad iqbal habibie el 19 de Nov. de 2018
Comentada: Manoj Samal el 3 de Dic. de 2020
I have a matrix 2x2, for example A= [ 0.064911 3.276493; 3.276493 311.2073]. I would like to calculate the eigenvalues and eigenvectors. I have calculated the eigenvalues by manual and match it with matlab is match. the manual of eigenvalues :
eigenvalues were calculated by |A- λ * I|=0
so I received the eigenvalues (0.0304;311.2418). Now I am trying to calculated the eigenvectors that I found the way like this
B= eig(A) ; this is calculating the eigenvalues
(v,d)=eig(A)
I got v= (-0.9999 0.0105; 0.0105 0.9999) and d = ( 0.0304 0 ; 0 311.2418).
I would like to ask how to calculate manual of matrix v? Hope someone can help. Thank you.
  1 comentario
Manoj Samal
Manoj Samal el 3 de Dic. de 2020
By using (v,d)=eig(A) gives v= normalised eigen vector(not eigen vector) and d=eigen values
N11=1/sqrt(1^2+3^2+1^2)=1/sqrt11
N21=3/ sqrt(3^2+2^2+1^2)=1/sqrt14 and so on....

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 19 de Nov. de 2018
Editada: Torsten el 19 de Nov. de 2018
By solving
(A-lambda1*I)*v1 = 0
and
(A-lambda2*I)*v2 = 0
You could use
v1 = null(A-lambda1*I)
and
v2 = null(A-lambda2*I)
to achieve this.
Best wishes
Torsten.
  7 comentarios
muhammad iqbal habibie
muhammad iqbal habibie el 19 de Nov. de 2018
I try manual it is hard though
A- λ * I
so
[0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 311.2418]
= [0.034511 3.276493; 3.276493 -0.0345]
how must I suppose to be v = (-0.9999 0.0105; 0.0105 0.9999)
any suggestion for manual calculation?
Torsten
Torsten el 19 de Nov. de 2018
([0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 0.0304])*[v11; v21]=[0;0]
Solve for v1=[v11;v21] and normalize the vector to get the first column of v.
([0.064911 3.276493; 3.276493 311.2073] - [311.2418 0; 0 311.2418])*[v12;v22]=[0;0]
Solve for v2=[v12;v22] and normalize the vector to get the second column of v.

Iniciar sesión para comentar.

Más respuestas (1)

Bruno Luong
Bruno Luong el 19 de Nov. de 2018
No cheating, this applies for 2x2 only
A= [ 0.064911 3.276493;
3.276493 311.2073];
lambda=eig(A); % you should do it by solving det(A-lambda I)=0
V = ones(2);
for k=1:2
B = A-lambda(k)*eye(size(A));
% select pivot column
[~,j] = max(sum(B.^2,1));
othercolumn = 3-j;
V(j,k) = -B(:,j)\B(:,othercolumn);
end
% Optional: Make eigenvectors l2 norm = 1
V = V ./ sqrt(sum(V.^2,1));
disp(V)
  2 comentarios
muhammad iqbal habibie
muhammad iqbal habibie el 20 de Nov. de 2018
Is it possible from
A= [ 0.064911 3.276493;
3.276493 311.2073];
to v = (-0.9999 0.0105; 0.0105 0.9999) with eigenvalues (0.0304;311.2418) using excel?
Torsten
Torsten el 21 de Nov. de 2018
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=2ahUKEwjF8uef_-TeAhUJ3qQKHZB3BSsQFjAIegQIBxAC&url=http%3A%2F%2Fwww-2.rotman.utoronto.ca%2F~hull%2Fsoftware%2FEigenvalue%26vector.xls&usg=AOvVaw2og1xfxU96ox_lDmx3k6GB

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by