rotation meshgrid surface with the predefined angel(using rotation matrix)

6 visualizaciones (últimos 30 días)
Let's say:
x=1:0.2:1.8= [1 1.2 1.4 1.6 1.8];
y=2:0.2:3 = [2 2.2 2.4 2.6 2.8 3];
z=[2 5 2 2 2; 2.1 2.1 2.1 2.1 2.1; 2 2 2 2 2; 3 3 3 3 3; 1 1 1 1 1; 2.5 2.5 2.5 2.5 2.5]; %matrix 6-by-5
[X,Y] = meshgrid(x,y);
surf(X,Y,Z);% the plot show below
The question is: How can I rotate the plot data with the angel=10 (degree), counterclockwise about Z axis, & How can I plot the new meshgrid surface (using the new rotate data) as the below figure?
angel=10;
R=[cosd(angel) -sind(angel) 0;sind(angel) cosd(angel) 0;0 0 1];%the rotation matrix R

Respuesta aceptada

ha ha
ha ha el 23 de Nov. de 2018
Editada: ha ha el 23 de Nov. de 2018
clear;clc;x = 1:0.2:1.8;
y = 2:0.2:3;
z=[ 2 5 2 2 2;2.1 2.1 2.1 2.1 2.1;2 2 2 2 2;3 3 3 3 3;1 1 1 1 1;2.5 2.5 2.5 2.5 2.5];
[X,Y] = meshgrid(x,y);
xyc = [mean(x), mean(y)];% Rotate about the center
angel = 30;
R = [cosd(angel), -sind(angel); sind(angel), cosd(angel)];
XY = xyc' + R * ([X(:) Y(:)]-xyc)';
XR = reshape(XY(1,:),size(X));
YR = reshape(XY(2,:),size(Y));
surf(X,Y,z);
hold on;surf(XR,YR,z);

Más respuestas (1)

Jan
Jan el 23 de Nov. de 2018
Editada: Jan el 23 de Nov. de 2018
A 2D rotation is sufficient, if you want to rotate the X and Y coordinates only.
x = 1:0.2:1.8; % [1 1.2 1.4 1.6 1.8];
y = 2:0.2:3; % [2 2.2 2.4 2.6 2.8 3];
Z = [2 , 5, 2, 2, 2; 2.1, 2.1, 2.1, 2.1, 2.1; 2, 2, 2, 2, 2; ...
3, 3, 3 3 3; 1 1 1 1 1; 2.5 2.5 2.5 2.5 2.5]; %matrix 6-by-5
[X, Y] = meshgrid(x,y);
subplot(1,2,1)
surf(X,Y,Z);
angel = 10;
R = [cosd(angel), -sind(angel); sind(angel), cosd(angel)];
XY = R * [X(:).'; Y(:).'];
XX = reshape(XY(1, :), size(X));
YY = reshape(XY(2, :), size(Y);
subplot(1,2,2)
surf(XX, YY, Z);
  7 comentarios
ha ha
ha ha el 24 de Nov. de 2018
@ Matt J @Bruno Luong @Jan . Can you help me this topic also? Thanks a lot.
https://www.mathworks.com/matlabcentral/answers/431656-rotate-the-3d-point-data-about-z-axis-and-ox-oy
Jan
Jan el 24 de Nov. de 2018
@haha: Please do not advertise another thread. Imagine the pollution of the forum, if all users would do this. Thanks.
"But as you observed, the surface is rotated and also translate. It is NOT only rotate." - My suggested code was a pure rotation around the origin of the corrdinate system. The modification by removing the mean of the points at first and add them after a rotation includes a translation in addition.

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by